
If \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\] then find the \[Z\] lies on
A. Circle
B. The imaginary axis
C. A real axis
D. An ellipse
Answer
216.3k+ views
Hint: In this question, we need to find the location of \[Z\] where, \[Z\] is a complex number. For this, we need to assume that \[Z = a + ib\]. We can decide the location of \[Z\] based on the value that will come after substituting the value of \[Z\] in the given equation. For this, we will use the concept of modulus of a complex number.
Formula used: The modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
Complete step-by-step answer: We know that \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Let \[Z = a + ib\]
Now, put \[Z = a + ib\] in the equation \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Thus, we get \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right| = {\left| {a + ib} \right|^2} + 1\]
Thus, the modulus of \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right|\] is given by
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi + {{\left( {ib} \right)}^2}} \right) - 1} \right| \]
We know that \[i^2=-1 \],
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi - {b^2}} \right) - 1} \right| \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} - {b^2} - 1} \right) + 2abi} \right| \\
\]
We know that the modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
By applying this concept, we get
\[ \Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {{{\left( {{a^2} - {b^2} - 1} \right)}^2} + {{\left( {2ab} \right)}^2}} \]
By simplifying, we get
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 4{a^2}{b^2} - 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\]
Also, the modulus of \[{\left| {\left( {a + ib} \right)} \right|^2}\] is given by
\[
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {a{}^2 + {{\left( {ib} \right)}^2} + 2abi} \right| \\
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {\left( {a{}^2 - {b^2}} \right) + 2abi} \right| \\
\]
Thus, we get
\[
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} - 2{a^2}{b^2} + {b^4} + 4{a^2}{b^2}} \\
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} + 2{a^2}{b^2} + {b^4}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \left( {{a^2} + {b^2}} \right) \\
\]
Now, consider \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
\[\sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = ({a^2} + {b^2} + 1)\]
By taking square on both sides, we get
\[
\Rightarrow 1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2} = {({a^2} + {b^2} + 1)^2} \\
\Rightarrow {({a^2} - {b^2} - 1)^2} + 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} - {({a^2} - {b^2} - 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{b^4} + {a^4} + 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} + 1 - {b^4} - {a^4} - 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} - 1 \\
\]
By simplifying further, we get
\[ \Rightarrow 4{a^2}{b^2}\; = {\text{ }}4{a^2} + 4{a^2}{b^2}\]
\[
\Rightarrow 4{a^2}{b^2}\; - 4{a^2}{b^2} = {\text{ }}4{a^2} \\
\Rightarrow {\text{ }}4{a^2} = 0 \\
\Rightarrow {\text{ }}{a^2} = 0 \\
\]
By taking square root on both sides, we get
\[ \Rightarrow {\text{ }}a = 0\]
That means the real part is zero.
Hence, this indicates that the \[Z\] lies on the imaginary axis.
Thus, \[Z\] lies on the imaginary axis if \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\].
Therefore, the option (B) is correct.
Additional Information: A complex number is a combination of real and imaginary number. It can be denoted as \[a + ib\] where, \[a\] is a real part and \[ib\] is the imaginary part. The modulus of a complex number is defined as the distance measured from the origin of the point on the argand plane expressing the complex number. The modulus of a complex number can be determined by taking the square root of the sum of the squares of the complex number's real and imaginary parts.
Note: Many students make mistakes in finding modulus. Also, in a complex number if the real part is zero then only the imaginary part exists and if the imaginary part is zero then only the real part exists.
Formula used: The modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
Complete step-by-step answer: We know that \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Let \[Z = a + ib\]
Now, put \[Z = a + ib\] in the equation \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Thus, we get \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right| = {\left| {a + ib} \right|^2} + 1\]
Thus, the modulus of \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right|\] is given by
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi + {{\left( {ib} \right)}^2}} \right) - 1} \right| \]
We know that \[i^2=-1 \],
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi - {b^2}} \right) - 1} \right| \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} - {b^2} - 1} \right) + 2abi} \right| \\
\]
We know that the modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
By applying this concept, we get
\[ \Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {{{\left( {{a^2} - {b^2} - 1} \right)}^2} + {{\left( {2ab} \right)}^2}} \]
By simplifying, we get
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 4{a^2}{b^2} - 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\]
Also, the modulus of \[{\left| {\left( {a + ib} \right)} \right|^2}\] is given by
\[
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {a{}^2 + {{\left( {ib} \right)}^2} + 2abi} \right| \\
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {\left( {a{}^2 - {b^2}} \right) + 2abi} \right| \\
\]
Thus, we get
\[
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} - 2{a^2}{b^2} + {b^4} + 4{a^2}{b^2}} \\
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} + 2{a^2}{b^2} + {b^4}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \left( {{a^2} + {b^2}} \right) \\
\]
Now, consider \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
\[\sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = ({a^2} + {b^2} + 1)\]
By taking square on both sides, we get
\[
\Rightarrow 1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2} = {({a^2} + {b^2} + 1)^2} \\
\Rightarrow {({a^2} - {b^2} - 1)^2} + 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} - {({a^2} - {b^2} - 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{b^4} + {a^4} + 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} + 1 - {b^4} - {a^4} - 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} - 1 \\
\]
By simplifying further, we get
\[ \Rightarrow 4{a^2}{b^2}\; = {\text{ }}4{a^2} + 4{a^2}{b^2}\]
\[
\Rightarrow 4{a^2}{b^2}\; - 4{a^2}{b^2} = {\text{ }}4{a^2} \\
\Rightarrow {\text{ }}4{a^2} = 0 \\
\Rightarrow {\text{ }}{a^2} = 0 \\
\]
By taking square root on both sides, we get
\[ \Rightarrow {\text{ }}a = 0\]
That means the real part is zero.
Hence, this indicates that the \[Z\] lies on the imaginary axis.
Thus, \[Z\] lies on the imaginary axis if \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\].
Therefore, the option (B) is correct.
Additional Information: A complex number is a combination of real and imaginary number. It can be denoted as \[a + ib\] where, \[a\] is a real part and \[ib\] is the imaginary part. The modulus of a complex number is defined as the distance measured from the origin of the point on the argand plane expressing the complex number. The modulus of a complex number can be determined by taking the square root of the sum of the squares of the complex number's real and imaginary parts.
Note: Many students make mistakes in finding modulus. Also, in a complex number if the real part is zero then only the imaginary part exists and if the imaginary part is zero then only the real part exists.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

