
If \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\] then find the \[Z\] lies on
A. Circle
B. The imaginary axis
C. A real axis
D. An ellipse
Answer
162k+ views
Hint: In this question, we need to find the location of \[Z\] where, \[Z\] is a complex number. For this, we need to assume that \[Z = a + ib\]. We can decide the location of \[Z\] based on the value that will come after substituting the value of \[Z\] in the given equation. For this, we will use the concept of modulus of a complex number.
Formula used: The modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
Complete step-by-step answer: We know that \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Let \[Z = a + ib\]
Now, put \[Z = a + ib\] in the equation \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Thus, we get \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right| = {\left| {a + ib} \right|^2} + 1\]
Thus, the modulus of \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right|\] is given by
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi + {{\left( {ib} \right)}^2}} \right) - 1} \right| \]
We know that \[i^2=-1 \],
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi - {b^2}} \right) - 1} \right| \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} - {b^2} - 1} \right) + 2abi} \right| \\
\]
We know that the modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
By applying this concept, we get
\[ \Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {{{\left( {{a^2} - {b^2} - 1} \right)}^2} + {{\left( {2ab} \right)}^2}} \]
By simplifying, we get
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 4{a^2}{b^2} - 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\]
Also, the modulus of \[{\left| {\left( {a + ib} \right)} \right|^2}\] is given by
\[
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {a{}^2 + {{\left( {ib} \right)}^2} + 2abi} \right| \\
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {\left( {a{}^2 - {b^2}} \right) + 2abi} \right| \\
\]
Thus, we get
\[
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} - 2{a^2}{b^2} + {b^4} + 4{a^2}{b^2}} \\
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} + 2{a^2}{b^2} + {b^4}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \left( {{a^2} + {b^2}} \right) \\
\]
Now, consider \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
\[\sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = ({a^2} + {b^2} + 1)\]
By taking square on both sides, we get
\[
\Rightarrow 1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2} = {({a^2} + {b^2} + 1)^2} \\
\Rightarrow {({a^2} - {b^2} - 1)^2} + 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} - {({a^2} - {b^2} - 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{b^4} + {a^4} + 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} + 1 - {b^4} - {a^4} - 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} - 1 \\
\]
By simplifying further, we get
\[ \Rightarrow 4{a^2}{b^2}\; = {\text{ }}4{a^2} + 4{a^2}{b^2}\]
\[
\Rightarrow 4{a^2}{b^2}\; - 4{a^2}{b^2} = {\text{ }}4{a^2} \\
\Rightarrow {\text{ }}4{a^2} = 0 \\
\Rightarrow {\text{ }}{a^2} = 0 \\
\]
By taking square root on both sides, we get
\[ \Rightarrow {\text{ }}a = 0\]
That means the real part is zero.
Hence, this indicates that the \[Z\] lies on the imaginary axis.
Thus, \[Z\] lies on the imaginary axis if \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\].
Therefore, the option (B) is correct.
Additional Information: A complex number is a combination of real and imaginary number. It can be denoted as \[a + ib\] where, \[a\] is a real part and \[ib\] is the imaginary part. The modulus of a complex number is defined as the distance measured from the origin of the point on the argand plane expressing the complex number. The modulus of a complex number can be determined by taking the square root of the sum of the squares of the complex number's real and imaginary parts.
Note: Many students make mistakes in finding modulus. Also, in a complex number if the real part is zero then only the imaginary part exists and if the imaginary part is zero then only the real part exists.
Formula used: The modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
Complete step-by-step answer: We know that \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Let \[Z = a + ib\]
Now, put \[Z = a + ib\] in the equation \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Thus, we get \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right| = {\left| {a + ib} \right|^2} + 1\]
Thus, the modulus of \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right|\] is given by
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi + {{\left( {ib} \right)}^2}} \right) - 1} \right| \]
We know that \[i^2=-1 \],
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi - {b^2}} \right) - 1} \right| \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} - {b^2} - 1} \right) + 2abi} \right| \\
\]
We know that the modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
By applying this concept, we get
\[ \Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {{{\left( {{a^2} - {b^2} - 1} \right)}^2} + {{\left( {2ab} \right)}^2}} \]
By simplifying, we get
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 4{a^2}{b^2} - 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\]
Also, the modulus of \[{\left| {\left( {a + ib} \right)} \right|^2}\] is given by
\[
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {a{}^2 + {{\left( {ib} \right)}^2} + 2abi} \right| \\
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {\left( {a{}^2 - {b^2}} \right) + 2abi} \right| \\
\]
Thus, we get
\[
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} - 2{a^2}{b^2} + {b^4} + 4{a^2}{b^2}} \\
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} + 2{a^2}{b^2} + {b^4}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \left( {{a^2} + {b^2}} \right) \\
\]
Now, consider \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
\[\sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = ({a^2} + {b^2} + 1)\]
By taking square on both sides, we get
\[
\Rightarrow 1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2} = {({a^2} + {b^2} + 1)^2} \\
\Rightarrow {({a^2} - {b^2} - 1)^2} + 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} - {({a^2} - {b^2} - 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{b^4} + {a^4} + 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} + 1 - {b^4} - {a^4} - 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} - 1 \\
\]
By simplifying further, we get
\[ \Rightarrow 4{a^2}{b^2}\; = {\text{ }}4{a^2} + 4{a^2}{b^2}\]
\[
\Rightarrow 4{a^2}{b^2}\; - 4{a^2}{b^2} = {\text{ }}4{a^2} \\
\Rightarrow {\text{ }}4{a^2} = 0 \\
\Rightarrow {\text{ }}{a^2} = 0 \\
\]
By taking square root on both sides, we get
\[ \Rightarrow {\text{ }}a = 0\]
That means the real part is zero.
Hence, this indicates that the \[Z\] lies on the imaginary axis.
Thus, \[Z\] lies on the imaginary axis if \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\].
Therefore, the option (B) is correct.
Additional Information: A complex number is a combination of real and imaginary number. It can be denoted as \[a + ib\] where, \[a\] is a real part and \[ib\] is the imaginary part. The modulus of a complex number is defined as the distance measured from the origin of the point on the argand plane expressing the complex number. The modulus of a complex number can be determined by taking the square root of the sum of the squares of the complex number's real and imaginary parts.
Note: Many students make mistakes in finding modulus. Also, in a complex number if the real part is zero then only the imaginary part exists and if the imaginary part is zero then only the real part exists.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
