
If \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\] then find the \[Z\] lies on
A. Circle
B. The imaginary axis
C. A real axis
D. An ellipse
Answer
233.1k+ views
Hint: In this question, we need to find the location of \[Z\] where, \[Z\] is a complex number. For this, we need to assume that \[Z = a + ib\]. We can decide the location of \[Z\] based on the value that will come after substituting the value of \[Z\] in the given equation. For this, we will use the concept of modulus of a complex number.
Formula used: The modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
Complete step-by-step answer: We know that \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Let \[Z = a + ib\]
Now, put \[Z = a + ib\] in the equation \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Thus, we get \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right| = {\left| {a + ib} \right|^2} + 1\]
Thus, the modulus of \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right|\] is given by
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi + {{\left( {ib} \right)}^2}} \right) - 1} \right| \]
We know that \[i^2=-1 \],
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi - {b^2}} \right) - 1} \right| \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} - {b^2} - 1} \right) + 2abi} \right| \\
\]
We know that the modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
By applying this concept, we get
\[ \Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {{{\left( {{a^2} - {b^2} - 1} \right)}^2} + {{\left( {2ab} \right)}^2}} \]
By simplifying, we get
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 4{a^2}{b^2} - 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\]
Also, the modulus of \[{\left| {\left( {a + ib} \right)} \right|^2}\] is given by
\[
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {a{}^2 + {{\left( {ib} \right)}^2} + 2abi} \right| \\
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {\left( {a{}^2 - {b^2}} \right) + 2abi} \right| \\
\]
Thus, we get
\[
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} - 2{a^2}{b^2} + {b^4} + 4{a^2}{b^2}} \\
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} + 2{a^2}{b^2} + {b^4}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \left( {{a^2} + {b^2}} \right) \\
\]
Now, consider \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
\[\sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = ({a^2} + {b^2} + 1)\]
By taking square on both sides, we get
\[
\Rightarrow 1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2} = {({a^2} + {b^2} + 1)^2} \\
\Rightarrow {({a^2} - {b^2} - 1)^2} + 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} - {({a^2} - {b^2} - 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{b^4} + {a^4} + 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} + 1 - {b^4} - {a^4} - 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} - 1 \\
\]
By simplifying further, we get
\[ \Rightarrow 4{a^2}{b^2}\; = {\text{ }}4{a^2} + 4{a^2}{b^2}\]
\[
\Rightarrow 4{a^2}{b^2}\; - 4{a^2}{b^2} = {\text{ }}4{a^2} \\
\Rightarrow {\text{ }}4{a^2} = 0 \\
\Rightarrow {\text{ }}{a^2} = 0 \\
\]
By taking square root on both sides, we get
\[ \Rightarrow {\text{ }}a = 0\]
That means the real part is zero.
Hence, this indicates that the \[Z\] lies on the imaginary axis.
Thus, \[Z\] lies on the imaginary axis if \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\].
Therefore, the option (B) is correct.
Additional Information: A complex number is a combination of real and imaginary number. It can be denoted as \[a + ib\] where, \[a\] is a real part and \[ib\] is the imaginary part. The modulus of a complex number is defined as the distance measured from the origin of the point on the argand plane expressing the complex number. The modulus of a complex number can be determined by taking the square root of the sum of the squares of the complex number's real and imaginary parts.
Note: Many students make mistakes in finding modulus. Also, in a complex number if the real part is zero then only the imaginary part exists and if the imaginary part is zero then only the real part exists.
Formula used: The modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
Complete step-by-step answer: We know that \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Let \[Z = a + ib\]
Now, put \[Z = a + ib\] in the equation \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
Thus, we get \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right| = {\left| {a + ib} \right|^2} + 1\]
Thus, the modulus of \[\left| {{{\left( {a + ib} \right)}^2} - 1} \right|\] is given by
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi + {{\left( {ib} \right)}^2}} \right) - 1} \right| \]
We know that \[i^2=-1 \],
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} + 2abi - {b^2}} \right) - 1} \right| \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \left| {\left( {{a^2} - {b^2} - 1} \right) + 2abi} \right| \\
\]
We know that the modulus of a complex number \[Z = a + ib\] is \[\sqrt {{a^2} + {b^2}} \]
By applying this concept, we get
\[ \Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {{{\left( {{a^2} - {b^2} - 1} \right)}^2} + {{\left( {2ab} \right)}^2}} \]
By simplifying, we get
\[
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 4{a^2}{b^2} - 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\Rightarrow \left| {{{\left( {a + ib} \right)}^2} - 1} \right| = \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} \\
\]
Also, the modulus of \[{\left| {\left( {a + ib} \right)} \right|^2}\] is given by
\[
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {a{}^2 + {{\left( {ib} \right)}^2} + 2abi} \right| \\
\Rightarrow {\left| {\left( {a + ib} \right)} \right|^2} = \left| {\left( {a{}^2 - {b^2}} \right) + 2abi} \right| \\
\]
Thus, we get
\[
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} - 2{a^2}{b^2} + {b^4} + 4{a^2}{b^2}} \\
\Rightarrow \sqrt {{{\left( {{a^2} - {b^2}} \right)}^2} + {{(2ab)}^2}} = \sqrt {{a^4} + 2{a^2}{b^2} + {b^4}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \\
\Rightarrow \sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = \left( {{a^2} + {b^2}} \right) \\
\]
Now, consider \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\]
\[\sqrt {1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2}} = ({a^2} + {b^2} + 1)\]
By taking square on both sides, we get
\[
\Rightarrow 1 + {a^4} + {b^4} + 2{a^2}{b^2} - 2{a^2} + 2{b^2} = {({a^2} + {b^2} + 1)^2} \\
\Rightarrow {({a^2} - {b^2} - 1)^2} + 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{({a^2} + {b^2} + 1)^2} - {({a^2} - {b^2} - 1)^2} \\
\Rightarrow 4{a^2}{b^2}\; = {\text{ }}{b^4} + {a^4} + 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} + 1 - {b^4} - {a^4} - 2{b^2} + 2{a^2} + {a^2}{b^2} + {b^2}{a^2} - 1 \\
\]
By simplifying further, we get
\[ \Rightarrow 4{a^2}{b^2}\; = {\text{ }}4{a^2} + 4{a^2}{b^2}\]
\[
\Rightarrow 4{a^2}{b^2}\; - 4{a^2}{b^2} = {\text{ }}4{a^2} \\
\Rightarrow {\text{ }}4{a^2} = 0 \\
\Rightarrow {\text{ }}{a^2} = 0 \\
\]
By taking square root on both sides, we get
\[ \Rightarrow {\text{ }}a = 0\]
That means the real part is zero.
Hence, this indicates that the \[Z\] lies on the imaginary axis.
Thus, \[Z\] lies on the imaginary axis if \[\left| {{Z^2} - 1} \right| = {\left| Z \right|^2} + 1\].
Therefore, the option (B) is correct.
Additional Information: A complex number is a combination of real and imaginary number. It can be denoted as \[a + ib\] where, \[a\] is a real part and \[ib\] is the imaginary part. The modulus of a complex number is defined as the distance measured from the origin of the point on the argand plane expressing the complex number. The modulus of a complex number can be determined by taking the square root of the sum of the squares of the complex number's real and imaginary parts.
Note: Many students make mistakes in finding modulus. Also, in a complex number if the real part is zero then only the imaginary part exists and if the imaginary part is zero then only the real part exists.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

