
If \[\left| {\overrightarrow A } \right| = 2\] and \[\left| {\overrightarrow B } \right| = 5\] and \[\overrightarrow A \times \overrightarrow B = 8\], then find the value of \[\overrightarrow A .\overrightarrow B \] .
A. 6
B. 2
C. 20
D. 8
Answer
216.3k+ views
Hint:
Firstly we find the value of sine using \[\overrightarrow A \times \overrightarrow B \] by expanding the formula and then using trigonometric formulas to find the value of cosine . And then solve the given expression \[\overrightarrow A .\overrightarrow B \] to find the required solution.
Formula Used:
Cross product of vectors \[\overrightarrow p \] and \[\overrightarrow q \] is \[\overrightarrow p \times \overrightarrow q = \left| {\overrightarrow p } \right|\left| {\overrightarrow q } \right|\sin \theta \]
Dot product of vectors \[\overrightarrow p \] and \[\overrightarrow q \] is \[\overrightarrow p \cdot \overrightarrow q = \left| {\overrightarrow p } \right|\left| {\overrightarrow q } \right|\cos \theta \]
Trigonometric formula: \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Complete step-by-step answer:
Given that \[\left| {\overrightarrow A } \right| = 2\] and \[\left| {\overrightarrow B } \right| = 5\] and \[\overrightarrow A \times \overrightarrow B = 8\]
From the formula of cross product, we get
\[\overrightarrow A \times \overrightarrow B = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\sin \theta \]
Substitute all the values and we get
\[ \Rightarrow 8 = 2 \times 5\sin \theta \]
Simplifying and we get
\[ \Rightarrow 8 = 10\sin \theta \]
\[ \Rightarrow \sin \theta = \dfrac{8}{{10}}\]
\[ \Rightarrow \sin \theta = \dfrac{4}{5}\]
Now we use trigonometric formula \[{\sin ^2}\theta + {\cos ^2}\theta = 1\], to find the value of \[\cos \theta \]
\[{\left( {\dfrac{4}{5}} \right)^2} + {\cos ^2}\theta = 1\]
Squaring and we get
\[ \Rightarrow \dfrac{{16}}{{25}} + {\cos ^2}\theta = 1\]
Simplifying and we get
\[ \Rightarrow {\cos ^2}\theta = 1 - \dfrac{{16}}{{25}}\]
\[ \Rightarrow {\cos ^2}\theta = \dfrac{{25 - 16}}{{25}}\]
\[ \Rightarrow {\cos ^2}\theta = \dfrac{9}{{25}}\]
Taking square root in both sides of the above equation and we get
\[ \Rightarrow \sqrt {{{\cos }^2}\theta } = \sqrt {\dfrac{9}{{25}}} \]
\[ \Rightarrow \cos \theta = \dfrac{3}{5}\]
Now we find the value of \[\overrightarrow A .\overrightarrow B \] by using the formula of dot product of vector
\[\overrightarrow A .\overrightarrow B = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta \]
Substitute all the values of \[\left| {\overrightarrow A } \right|,\left| {\overrightarrow B } \right|\] and \[\cos \theta \], we get
\[ \Rightarrow \overrightarrow A .\overrightarrow B = 2 \times 5 \times \dfrac{3}{5}\]
\[ \Rightarrow \overrightarrow A .\overrightarrow B = 2 \times 3\]
\[ \Rightarrow \overrightarrow A .\overrightarrow B = 6\]
Therefore, the value of \[\overrightarrow A .\overrightarrow B \] is 6.
Hence, the correct option is option A.
Note:
A dot product of two vectors is also called the scalar product. It is the product of the magnitude of the two vectors and the cosine of the angle that they form with each other.
A cross product of two vectors is also called the vector product. It is the product of the magnitude of the two vectors and the sine of the angle that they form with each other.
Firstly we find the value of sine using \[\overrightarrow A \times \overrightarrow B \] by expanding the formula and then using trigonometric formulas to find the value of cosine . And then solve the given expression \[\overrightarrow A .\overrightarrow B \] to find the required solution.
Formula Used:
Cross product of vectors \[\overrightarrow p \] and \[\overrightarrow q \] is \[\overrightarrow p \times \overrightarrow q = \left| {\overrightarrow p } \right|\left| {\overrightarrow q } \right|\sin \theta \]
Dot product of vectors \[\overrightarrow p \] and \[\overrightarrow q \] is \[\overrightarrow p \cdot \overrightarrow q = \left| {\overrightarrow p } \right|\left| {\overrightarrow q } \right|\cos \theta \]
Trigonometric formula: \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Complete step-by-step answer:
Given that \[\left| {\overrightarrow A } \right| = 2\] and \[\left| {\overrightarrow B } \right| = 5\] and \[\overrightarrow A \times \overrightarrow B = 8\]
From the formula of cross product, we get
\[\overrightarrow A \times \overrightarrow B = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\sin \theta \]
Substitute all the values and we get
\[ \Rightarrow 8 = 2 \times 5\sin \theta \]
Simplifying and we get
\[ \Rightarrow 8 = 10\sin \theta \]
\[ \Rightarrow \sin \theta = \dfrac{8}{{10}}\]
\[ \Rightarrow \sin \theta = \dfrac{4}{5}\]
Now we use trigonometric formula \[{\sin ^2}\theta + {\cos ^2}\theta = 1\], to find the value of \[\cos \theta \]
\[{\left( {\dfrac{4}{5}} \right)^2} + {\cos ^2}\theta = 1\]
Squaring and we get
\[ \Rightarrow \dfrac{{16}}{{25}} + {\cos ^2}\theta = 1\]
Simplifying and we get
\[ \Rightarrow {\cos ^2}\theta = 1 - \dfrac{{16}}{{25}}\]
\[ \Rightarrow {\cos ^2}\theta = \dfrac{{25 - 16}}{{25}}\]
\[ \Rightarrow {\cos ^2}\theta = \dfrac{9}{{25}}\]
Taking square root in both sides of the above equation and we get
\[ \Rightarrow \sqrt {{{\cos }^2}\theta } = \sqrt {\dfrac{9}{{25}}} \]
\[ \Rightarrow \cos \theta = \dfrac{3}{5}\]
Now we find the value of \[\overrightarrow A .\overrightarrow B \] by using the formula of dot product of vector
\[\overrightarrow A .\overrightarrow B = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta \]
Substitute all the values of \[\left| {\overrightarrow A } \right|,\left| {\overrightarrow B } \right|\] and \[\cos \theta \], we get
\[ \Rightarrow \overrightarrow A .\overrightarrow B = 2 \times 5 \times \dfrac{3}{5}\]
\[ \Rightarrow \overrightarrow A .\overrightarrow B = 2 \times 3\]
\[ \Rightarrow \overrightarrow A .\overrightarrow B = 6\]
Therefore, the value of \[\overrightarrow A .\overrightarrow B \] is 6.
Hence, the correct option is option A.
Note:
A dot product of two vectors is also called the scalar product. It is the product of the magnitude of the two vectors and the cosine of the angle that they form with each other.
A cross product of two vectors is also called the vector product. It is the product of the magnitude of the two vectors and the sine of the angle that they form with each other.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

