
If $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$, then $X =$
A . $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ -}3 & 4 \\
14 & -13 \\
\end{matrix} \right]$
B $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]$
C $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]$
D \[\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]\]
Answer
161.1k+ views
Hint: To solve this question we will take each of the options as the value of $X$ and substitute in the given equation and see if both sides are equal or not, that is if $L.H.S=R.H.S$. We will take each of the options and them. And the option which will prove $L.H.S=R.H.S$ by substituting as the value of $X$ in the equation then will be the correct answer.
Complete step by step Solution:
We will check the first option,
$\left[ {\begin{array}{*{20}{c}}
3&1 \\
4&1
\end{array}} \right]X = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
Let $X = \left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right]$
\[\left[ {\begin{array}{*{20}{c}}
3&1 \\
4&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]\]
After multiplication, we will get
$\left[ {\begin{array}{*{20}{c}}
{3( - 3) + 14}&{3(4) + ( - 13)} \\
{4( - 3) + 14}&{4(4) + ( - 13)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
{ - 9 + 14}&{12 - 13} \\
{ - 12 + 14}&{16 - 13}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
After solving, we get
$\left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
LHS=RHS
Hence, $X = \left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right]$
Therefore, option A is correct.
We will now take the second option $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]$.and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times 3+1\times (-14) & \text{ }\!\!~\!\!\text{ }3\times (-4)+1\times 13 \\
4\times 3+1\times (-14) & \text{ }\!\!~\!\!\text{ }4\times (-4)+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
-5 & 1 \\
-2 & -3 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
So the second option is incorrect.
Now we will check third option $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]$ and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times 3+1\times 14 & \text{ }\!\!~\!\!\text{ }3\times 4+1\times 13 \\
4\times 3+1\times 14 & \text{ }\!\!~\!\!\text{ }4\times 4+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
23 & 25 \\
26 & 29 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
Hence the third option is also incorrect.
Now we will check fourth option \[\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]\] and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times (-3)+1\times (-14) & \text{ }\!\!~\!\!\text{ }3\times 4+1\times 13 \\
4\times (-3)+1\times (-14) & \text{ }\!\!~\!\!\text{ }4\times 4+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
-23 & 25 \\
-26 & 29 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
Therefore, the fourth option is also incorrect.
Therefore, the correct option is (A).
Note: Before doing multiplication in matrices we need to check first the orders of the matrices then do calculations carefully. To multiply we will take each element of the column of the first matrix and then multiply with each element of rows of the other matrix and then add them .
After we checked the first option and as it was equal on both sides that is $L.H.S=R.H.S$ , it was not necessary to check all the other remaining options.
Complete step by step Solution:
We will check the first option,
$\left[ {\begin{array}{*{20}{c}}
3&1 \\
4&1
\end{array}} \right]X = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
Let $X = \left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right]$
\[\left[ {\begin{array}{*{20}{c}}
3&1 \\
4&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]\]
After multiplication, we will get
$\left[ {\begin{array}{*{20}{c}}
{3( - 3) + 14}&{3(4) + ( - 13)} \\
{4( - 3) + 14}&{4(4) + ( - 13)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
{ - 9 + 14}&{12 - 13} \\
{ - 12 + 14}&{16 - 13}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
After solving, we get
$\left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
LHS=RHS
Hence, $X = \left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right]$
Therefore, option A is correct.
We will now take the second option $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]$.and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times 3+1\times (-14) & \text{ }\!\!~\!\!\text{ }3\times (-4)+1\times 13 \\
4\times 3+1\times (-14) & \text{ }\!\!~\!\!\text{ }4\times (-4)+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
-5 & 1 \\
-2 & -3 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
So the second option is incorrect.
Now we will check third option $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]$ and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times 3+1\times 14 & \text{ }\!\!~\!\!\text{ }3\times 4+1\times 13 \\
4\times 3+1\times 14 & \text{ }\!\!~\!\!\text{ }4\times 4+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
23 & 25 \\
26 & 29 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
Hence the third option is also incorrect.
Now we will check fourth option \[\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]\] and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times (-3)+1\times (-14) & \text{ }\!\!~\!\!\text{ }3\times 4+1\times 13 \\
4\times (-3)+1\times (-14) & \text{ }\!\!~\!\!\text{ }4\times 4+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
-23 & 25 \\
-26 & 29 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
Therefore, the fourth option is also incorrect.
Therefore, the correct option is (A).
Note: Before doing multiplication in matrices we need to check first the orders of the matrices then do calculations carefully. To multiply we will take each element of the column of the first matrix and then multiply with each element of rows of the other matrix and then add them .
After we checked the first option and as it was equal on both sides that is $L.H.S=R.H.S$ , it was not necessary to check all the other remaining options.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
