
If \[\left( {a,{a^2}} \right)\] falls inside the angle made by the lines \[y = \dfrac{x}{2}, x > 0\] and \[y = 3x, x > 0\]. Then find the interval of \[a\].
A. \[\left( {3,\infty } \right)\]
B. \[\left( {\dfrac{1}{2},3} \right)\]
C. \[\left( { - 3, - \left( {\dfrac{1}{2}} \right)} \right)\]
D. \[\left( {0,\dfrac{1}{2}} \right)\]
Answer
163.8k+ views
Hint In the given question, two equations of lines and a point are given. We substitute the coordinates of the point in both equations and apply the conditions of greater than 0 or less than 0. In the end, simplify both inequality equations and get the interval of \[a\].
Formula used
If a point \[\left( {{x_1},{y_1}} \right)\] lies above the line \[ax + by = c\], then the inequality equation is \[a{x_1} + b{y_1} > c\].
If a point \[\left( {{x_1},{y_1}} \right)\] lies below the line \[ax + by = c\], then the inequality equation is \[a{x_1} + b{y_1} < c\].
Complete step by step solution:
The given equations of lines are \[y = \dfrac{x}{2}, x > 0\] and \[y = 3x, x > 0\].
The point \[\left( {a,{a^2}} \right)\] lies inside the angle made by the given two lines.

The point \[\left( {a,{a^2}} \right)\] lies above the line \[y - \dfrac{x}{2} = 0, x > 0\].
So, the inequality equation is
\[{a^2} - \dfrac{a}{2} > 0\]
\[ \Rightarrow \]\[a\left( {a - \dfrac{1}{2}} \right) > 0\]
\[ \Rightarrow \]\[a > 0\] and \[a > \dfrac{1}{2}\] \[.....\left( 1 \right)\]
The point \[\left( {a,{a^2}} \right)\] lies below the line \[y - 3x = 0, x > 0\].
So, the inequality equation is
\[{a^2} - 3a < 0\]
\[ \Rightarrow \]\[a\left( {a - 3} \right) < 0\]
\[ \Rightarrow \]\[a < 0\] and \[a < 3\] \[.....\left( 2 \right)\]
From equation \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[a > \dfrac{1}{2}\] or \[a < 0\] and \[0 < a < 3\]
\[ \Rightarrow \]\[\dfrac{1}{2} < a < 3\]
\[ \Rightarrow \]\[a \in \left( {\dfrac{1}{2},3} \right)\]
Hence the correct option is B.
Note:The “and” word represents the intersection of two sets and the “or” word denotes the union of two sets. Students are often confused by these two words.
Students often get confused in the conversion of the inequality into an interval. Use the following rules to understand the conversion.
\[a < x < b \Rightarrow x \in \left( {a,b} \right)\]
\[a < x \le b \Rightarrow x \in \left( {a,b} \right]\]
\[a \le x < b \Rightarrow x \in \left[ {a,b} \right)\]
\[a \le x \le b \Rightarrow x \in \left[ {a,b} \right]\]
Formula used
If a point \[\left( {{x_1},{y_1}} \right)\] lies above the line \[ax + by = c\], then the inequality equation is \[a{x_1} + b{y_1} > c\].
If a point \[\left( {{x_1},{y_1}} \right)\] lies below the line \[ax + by = c\], then the inequality equation is \[a{x_1} + b{y_1} < c\].
Complete step by step solution:
The given equations of lines are \[y = \dfrac{x}{2}, x > 0\] and \[y = 3x, x > 0\].
The point \[\left( {a,{a^2}} \right)\] lies inside the angle made by the given two lines.

The point \[\left( {a,{a^2}} \right)\] lies above the line \[y - \dfrac{x}{2} = 0, x > 0\].
So, the inequality equation is
\[{a^2} - \dfrac{a}{2} > 0\]
\[ \Rightarrow \]\[a\left( {a - \dfrac{1}{2}} \right) > 0\]
\[ \Rightarrow \]\[a > 0\] and \[a > \dfrac{1}{2}\] \[.....\left( 1 \right)\]
The point \[\left( {a,{a^2}} \right)\] lies below the line \[y - 3x = 0, x > 0\].
So, the inequality equation is
\[{a^2} - 3a < 0\]
\[ \Rightarrow \]\[a\left( {a - 3} \right) < 0\]
\[ \Rightarrow \]\[a < 0\] and \[a < 3\] \[.....\left( 2 \right)\]
From equation \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[a > \dfrac{1}{2}\] or \[a < 0\] and \[0 < a < 3\]
\[ \Rightarrow \]\[\dfrac{1}{2} < a < 3\]
\[ \Rightarrow \]\[a \in \left( {\dfrac{1}{2},3} \right)\]
Hence the correct option is B.
Note:The “and” word represents the intersection of two sets and the “or” word denotes the union of two sets. Students are often confused by these two words.
Students often get confused in the conversion of the inequality into an interval. Use the following rules to understand the conversion.
\[a < x < b \Rightarrow x \in \left( {a,b} \right)\]
\[a < x \le b \Rightarrow x \in \left( {a,b} \right]\]
\[a \le x < b \Rightarrow x \in \left[ {a,b} \right)\]
\[a \le x \le b \Rightarrow x \in \left[ {a,b} \right]\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
