
If $\lambda x^{2}-5 x y+6 y^{2}+x-3 y=0$ represents a pair of straight lines, then their point of intersection is
1) $(1,3)$
2) $(-1,-3)$
3) $(3,1)$
4) $(-3,-1)$
Answer
164.7k+ views
Hint: Here we first need to equate the given expression with the general form. So that we can find the unknown values. And for finding the point of intersection, we have to substitute the values in the straight-line equation. The resultant values represent the points of intersection.
Formula Used: The junction of two lines is referred to as the point of intersection. The equations $a_{1} x+b_{1} y+c_{1}=0$and $a_{2} x+b_{2} y+c_{2}=0$correspondingly depict these two lines.
Complete step by step Solution:
Given $\lambda x^{2}-5 x y+6 y^{2}+x-3 y=0$
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
We get $a=\lambda, h=-5 / 2, b=6, g=1 / 2, f=-3 / 2, c=0$
For a straight line,
$a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
Then substituting the values
We get
$=>\lambda \times 6 \times 0+2 \times-3 / 2 \times 1 / 2 \times-5 / 2-\lambda \times 9 / 4-6 \times 1 / 4-0=0$
$=>0+15 / 4-9 \lambda / 4-3 / 2=0$
$=>9 / 4=9 \lambda / 4$
$=>\lambda=1$
So the equation becomes $x^{2}-5 x y+6 y^{2}+x-3 y=0$
$=>x^{2}-3 x y-2 x y+6 y^{2}+x-3 y=0$
$=>x(x-3 y)-2 y(x-3 y)+x-3 y=0$
Simplify the terms
$=>(x-3 y)(x-2 y+1)=0$
So $x-3 y=0$……...(i)
$x-2y+1=0$…………..(2)
Solving (i) and (ii)
We get$x=-3, y=-1$
The point of intersection of the pair of straight lines $x^{2}-5 x y+6 y^{2}+x-3 y=0$ is $(-3,-1)$
Hence, the correct option is 4.
Note: Students should keep in mind that when two lines are said to intersect when they have exactly one point in common. There is a point at which the intersecting lines meet. The point of intersection is the same location that appears on all intersecting lines. There will be a place where the two coplanar, non-parallel straight lines intersect.
Finding the intersection of three or more lines is achievable. We can determine the answer for the location of the intersection of two lines by resolving the two equations.
Formula Used: The junction of two lines is referred to as the point of intersection. The equations $a_{1} x+b_{1} y+c_{1}=0$and $a_{2} x+b_{2} y+c_{2}=0$correspondingly depict these two lines.
Complete step by step Solution:
Given $\lambda x^{2}-5 x y+6 y^{2}+x-3 y=0$
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
We get $a=\lambda, h=-5 / 2, b=6, g=1 / 2, f=-3 / 2, c=0$
For a straight line,
$a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
Then substituting the values
We get
$=>\lambda \times 6 \times 0+2 \times-3 / 2 \times 1 / 2 \times-5 / 2-\lambda \times 9 / 4-6 \times 1 / 4-0=0$
$=>0+15 / 4-9 \lambda / 4-3 / 2=0$
$=>9 / 4=9 \lambda / 4$
$=>\lambda=1$
So the equation becomes $x^{2}-5 x y+6 y^{2}+x-3 y=0$
$=>x^{2}-3 x y-2 x y+6 y^{2}+x-3 y=0$
$=>x(x-3 y)-2 y(x-3 y)+x-3 y=0$
Simplify the terms
$=>(x-3 y)(x-2 y+1)=0$
So $x-3 y=0$……...(i)
$x-2y+1=0$…………..(2)
Solving (i) and (ii)
We get$x=-3, y=-1$
The point of intersection of the pair of straight lines $x^{2}-5 x y+6 y^{2}+x-3 y=0$ is $(-3,-1)$
Hence, the correct option is 4.
Note: Students should keep in mind that when two lines are said to intersect when they have exactly one point in common. There is a point at which the intersecting lines meet. The point of intersection is the same location that appears on all intersecting lines. There will be a place where the two coplanar, non-parallel straight lines intersect.
Finding the intersection of three or more lines is achievable. We can determine the answer for the location of the intersection of two lines by resolving the two equations.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
