
If \[\int\limits_0^\pi {xf\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx = k} \int\limits_0^{\dfrac{\pi }{2}} {f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \], then what is the value of \[k\]?
A. \[\dfrac{\pi }{2}\]
B. \[\pi \]
C. \[ - \dfrac{\pi }{2}\]
D. None of these
Answer
163.5k+ views
Hint: Here, an equation of definite integrals is given. First, rewrite the left-hand side by using the definite integral rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]. Then, simplify it by applying the trigonometric identities. After that, add this new integral with the original integral and simplify it. In the end, equate it with the right-hand side to get the required answer.
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
If \[f\left( x \right) = f\left( {2a - x} \right)\] , then \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\]
Complete step by step solution: The given definite integral equation is \[\int\limits_0^\pi {xf\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx = k} \int\limits_0^{\dfrac{\pi }{2}} {f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \].
Let consider,
\[I = \int\limits_0^\pi {xf\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \] \[.....\left( 1 \right)\]
Apply the definite integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {{{\cos }^2}\left( {\pi - x} \right) + {{\tan }^4}\left( {\pi - x} \right)} \right)dx} \]
Now apply the trigonometric identities \[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\] and \[{\tan ^n}\left( {\pi - \theta } \right) = {\left( { - \tan \theta } \right)^n}\].
We get,
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_0^\pi {xf\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} + \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
Here, \[f\left( x \right) = f\left( {2a - x} \right)\]. So, apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} {\pi f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
Divide both sides by 2.
\[ \Rightarrow I = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
Now equate the above equation with the right-hand side of the given original equation.
\[\pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} = k\int\limits_0^{\dfrac{\pi }{2}} {f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
Equating both sides, we get
\[k = \pi \]
Option ‘B’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\sin ^n}\left( {\pi - \theta } \right) = {\sin ^n}\theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\]
\[{\tan ^n}\left( {\pi - \theta } \right) = {\left( { - \tan \theta } \right)^n}\]
Formula Used: Definite integration rule: \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\]
If \[f\left( x \right) = f\left( {2a - x} \right)\] , then \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\]
Complete step by step solution: The given definite integral equation is \[\int\limits_0^\pi {xf\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx = k} \int\limits_0^{\dfrac{\pi }{2}} {f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \].
Let consider,
\[I = \int\limits_0^\pi {xf\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \] \[.....\left( 1 \right)\]
Apply the definite integration rule \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx\] on the right-hand side.
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {{{\cos }^2}\left( {\pi - x} \right) + {{\tan }^4}\left( {\pi - x} \right)} \right)dx} \]
Now apply the trigonometric identities \[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\] and \[{\tan ^n}\left( {\pi - \theta } \right) = {\left( { - \tan \theta } \right)^n}\].
We get,
\[I = \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[2I = \int\limits_0^\pi {xf\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} + \int\limits_0^\pi {\left( {\pi - x} \right)f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\left( {x + \pi - x} \right)f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
\[ \Rightarrow 2I = \int\limits_0^\pi {\pi f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
Here, \[f\left( x \right) = f\left( {2a - x} \right)\]. So, apply the integration rule \[\int\limits_0^{2a} {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\].
\[ \Rightarrow 2I = 2\int\limits_0^{\dfrac{\pi }{2}} {\pi f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
Divide both sides by 2.
\[ \Rightarrow I = \pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
Now equate the above equation with the right-hand side of the given original equation.
\[\pi \int\limits_0^{\dfrac{\pi }{2}} {f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} = k\int\limits_0^{\dfrac{\pi }{2}} {f\left( {{{\cos }^2}x + {{\tan }^4}x} \right)dx} \]
Equating both sides, we get
\[k = \pi \]
Option ‘B’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\sin ^n}\left( {\pi - \theta } \right) = {\sin ^n}\theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = {\left( { - \cos \theta } \right)^n}\]
\[{\tan ^n}\left( {\pi - \theta } \right) = {\left( { - \tan \theta } \right)^n}\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
