
if in triangle$\vartriangle ABC$,$\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ then the triangle is
A. Right angled triangle.
B. Isosceles
C. Right angled or isosceles.
D. Right angled isosceles.
Answer
216.3k+ views
Hint: To solve this question, we will first take the given equation and reciprocate it. After this we will apply componendo and dividendo and simplify it using trigonometric formulas. After this we will use sine Law $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$and cosine rules and deduce an equation which in terms will state the type of the triangle.
Formula used:
The cosine rules are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
\[\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}=\cos B\]
$\begin{align}
& \sin (A+B)+\sin (A-B)=2\sin A\cos B \\
& \sin (A+B)-\sin (A-B)=2\cos A\sin B \\
\end{align}$
Complete step-by-step solution:
We are given a triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and we have to determine the type of the triangle.
We will take the given equation $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and then reciprocate it first.
$\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}=\frac{\sin (A+B)}{\sin (A-B)}$
Now we will use componendo and dividendo on both the sides,
$\frac{{{a}^{2}}+{{b}^{2}}+{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}-({{a}^{2}}-{{b}^{2}})}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{2{{a}^{2}}}{2{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
We will now use the formula of
$\sin (A+B)+\sin (A-B)$and $\sin (A+B)-\sin (A-B)$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{2\sin A\cos B}{2\cos A\sin B} \\
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}
\end{align}$
Now we will take sine law$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ and equate it to some constant $\frac{1}{k}$. So the value of angles $\sin A$and $\sin B$will be,
$\begin{align}
& \sin A=ak \\
& \sin B=bk \\
\end{align}$
We will now substitute the value of angles $\sin A$and $\sin B$in $\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{ak\cos B}{bk\cos A} \\
& \frac{a}{b}=\frac{\cos B}{\cos A} \\
\end{align}$
We will now use cosine rule for the angle $\cos A$ and $\cos B$ and substitute it.
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\]
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{a}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{b}}\]
We will now simplify the equation,
\[\begin{align}
& \frac{a}{b}=\frac{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)b}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)a} \\
& \left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right){{a}^{2}}=\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right){{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}-{{a}^{4}}={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}-{{b}^{4}} \\
& {{a}^{2}}{{c}^{2}}-{{b}^{2}}{{c}^{2}}={{a}^{4}}-{{b}^{4}} \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})=({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}}) \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})-({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0 \\
& ({{a}^{2}}-{{b}^{2}})\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0
\end{align}\]
We will now equate both equation to zero.
\[({{a}^{2}}-{{b}^{2}})=0\] or \[\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0\]
$a=b$ or ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$
We know that $a=b$is the condition of an isosceles triangle and ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ is the condition for a right angled triangle.
The triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$, the triangle is either an isosceles triangle or a right angled triangle. Hence the correct option is (C).
Note:
The componendo and dividendo rule states that if \[\frac{a}{b}=\frac{c}{d}\] then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
In a right angled triangle, the relationship between the three sides $a,b,c$of the triangle is ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$.
Formula used:
The cosine rules are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
\[\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}=\cos B\]
$\begin{align}
& \sin (A+B)+\sin (A-B)=2\sin A\cos B \\
& \sin (A+B)-\sin (A-B)=2\cos A\sin B \\
\end{align}$
Complete step-by-step solution:
We are given a triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and we have to determine the type of the triangle.
We will take the given equation $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and then reciprocate it first.
$\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}=\frac{\sin (A+B)}{\sin (A-B)}$
Now we will use componendo and dividendo on both the sides,
$\frac{{{a}^{2}}+{{b}^{2}}+{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}-({{a}^{2}}-{{b}^{2}})}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{2{{a}^{2}}}{2{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
We will now use the formula of
$\sin (A+B)+\sin (A-B)$and $\sin (A+B)-\sin (A-B)$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{2\sin A\cos B}{2\cos A\sin B} \\
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}
\end{align}$
Now we will take sine law$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ and equate it to some constant $\frac{1}{k}$. So the value of angles $\sin A$and $\sin B$will be,
$\begin{align}
& \sin A=ak \\
& \sin B=bk \\
\end{align}$
We will now substitute the value of angles $\sin A$and $\sin B$in $\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{ak\cos B}{bk\cos A} \\
& \frac{a}{b}=\frac{\cos B}{\cos A} \\
\end{align}$
We will now use cosine rule for the angle $\cos A$ and $\cos B$ and substitute it.
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\]
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{a}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{b}}\]
We will now simplify the equation,
\[\begin{align}
& \frac{a}{b}=\frac{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)b}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)a} \\
& \left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right){{a}^{2}}=\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right){{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}-{{a}^{4}}={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}-{{b}^{4}} \\
& {{a}^{2}}{{c}^{2}}-{{b}^{2}}{{c}^{2}}={{a}^{4}}-{{b}^{4}} \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})=({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}}) \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})-({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0 \\
& ({{a}^{2}}-{{b}^{2}})\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0
\end{align}\]
We will now equate both equation to zero.
\[({{a}^{2}}-{{b}^{2}})=0\] or \[\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0\]
$a=b$ or ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$
We know that $a=b$is the condition of an isosceles triangle and ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ is the condition for a right angled triangle.
The triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$, the triangle is either an isosceles triangle or a right angled triangle. Hence the correct option is (C).
Note:
The componendo and dividendo rule states that if \[\frac{a}{b}=\frac{c}{d}\] then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
In a right angled triangle, the relationship between the three sides $a,b,c$of the triangle is ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

