
if in triangle$\vartriangle ABC$,$\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ then the triangle is
A. Right angled triangle.
B. Isosceles
C. Right angled or isosceles.
D. Right angled isosceles.
Answer
162.3k+ views
Hint: To solve this question, we will first take the given equation and reciprocate it. After this we will apply componendo and dividendo and simplify it using trigonometric formulas. After this we will use sine Law $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$and cosine rules and deduce an equation which in terms will state the type of the triangle.
Formula used:
The cosine rules are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
\[\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}=\cos B\]
$\begin{align}
& \sin (A+B)+\sin (A-B)=2\sin A\cos B \\
& \sin (A+B)-\sin (A-B)=2\cos A\sin B \\
\end{align}$
Complete step-by-step solution:
We are given a triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and we have to determine the type of the triangle.
We will take the given equation $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and then reciprocate it first.
$\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}=\frac{\sin (A+B)}{\sin (A-B)}$
Now we will use componendo and dividendo on both the sides,
$\frac{{{a}^{2}}+{{b}^{2}}+{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}-({{a}^{2}}-{{b}^{2}})}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{2{{a}^{2}}}{2{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
We will now use the formula of
$\sin (A+B)+\sin (A-B)$and $\sin (A+B)-\sin (A-B)$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{2\sin A\cos B}{2\cos A\sin B} \\
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}
\end{align}$
Now we will take sine law$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ and equate it to some constant $\frac{1}{k}$. So the value of angles $\sin A$and $\sin B$will be,
$\begin{align}
& \sin A=ak \\
& \sin B=bk \\
\end{align}$
We will now substitute the value of angles $\sin A$and $\sin B$in $\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{ak\cos B}{bk\cos A} \\
& \frac{a}{b}=\frac{\cos B}{\cos A} \\
\end{align}$
We will now use cosine rule for the angle $\cos A$ and $\cos B$ and substitute it.
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\]
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{a}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{b}}\]
We will now simplify the equation,
\[\begin{align}
& \frac{a}{b}=\frac{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)b}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)a} \\
& \left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right){{a}^{2}}=\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right){{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}-{{a}^{4}}={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}-{{b}^{4}} \\
& {{a}^{2}}{{c}^{2}}-{{b}^{2}}{{c}^{2}}={{a}^{4}}-{{b}^{4}} \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})=({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}}) \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})-({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0 \\
& ({{a}^{2}}-{{b}^{2}})\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0
\end{align}\]
We will now equate both equation to zero.
\[({{a}^{2}}-{{b}^{2}})=0\] or \[\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0\]
$a=b$ or ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$
We know that $a=b$is the condition of an isosceles triangle and ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ is the condition for a right angled triangle.
The triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$, the triangle is either an isosceles triangle or a right angled triangle. Hence the correct option is (C).
Note:
The componendo and dividendo rule states that if \[\frac{a}{b}=\frac{c}{d}\] then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
In a right angled triangle, the relationship between the three sides $a,b,c$of the triangle is ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$.
Formula used:
The cosine rules are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
\[\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}=\cos B\]
$\begin{align}
& \sin (A+B)+\sin (A-B)=2\sin A\cos B \\
& \sin (A+B)-\sin (A-B)=2\cos A\sin B \\
\end{align}$
Complete step-by-step solution:
We are given a triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and we have to determine the type of the triangle.
We will take the given equation $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and then reciprocate it first.
$\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}=\frac{\sin (A+B)}{\sin (A-B)}$
Now we will use componendo and dividendo on both the sides,
$\frac{{{a}^{2}}+{{b}^{2}}+{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}-({{a}^{2}}-{{b}^{2}})}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{2{{a}^{2}}}{2{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
We will now use the formula of
$\sin (A+B)+\sin (A-B)$and $\sin (A+B)-\sin (A-B)$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{2\sin A\cos B}{2\cos A\sin B} \\
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}
\end{align}$
Now we will take sine law$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ and equate it to some constant $\frac{1}{k}$. So the value of angles $\sin A$and $\sin B$will be,
$\begin{align}
& \sin A=ak \\
& \sin B=bk \\
\end{align}$
We will now substitute the value of angles $\sin A$and $\sin B$in $\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{ak\cos B}{bk\cos A} \\
& \frac{a}{b}=\frac{\cos B}{\cos A} \\
\end{align}$
We will now use cosine rule for the angle $\cos A$ and $\cos B$ and substitute it.
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\]
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{a}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{b}}\]
We will now simplify the equation,
\[\begin{align}
& \frac{a}{b}=\frac{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)b}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)a} \\
& \left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right){{a}^{2}}=\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right){{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}-{{a}^{4}}={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}-{{b}^{4}} \\
& {{a}^{2}}{{c}^{2}}-{{b}^{2}}{{c}^{2}}={{a}^{4}}-{{b}^{4}} \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})=({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}}) \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})-({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0 \\
& ({{a}^{2}}-{{b}^{2}})\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0
\end{align}\]
We will now equate both equation to zero.
\[({{a}^{2}}-{{b}^{2}})=0\] or \[\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0\]
$a=b$ or ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$
We know that $a=b$is the condition of an isosceles triangle and ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ is the condition for a right angled triangle.
The triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$, the triangle is either an isosceles triangle or a right angled triangle. Hence the correct option is (C).
Note:
The componendo and dividendo rule states that if \[\frac{a}{b}=\frac{c}{d}\] then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
In a right angled triangle, the relationship between the three sides $a,b,c$of the triangle is ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
