
if in triangle$\vartriangle ABC$,$\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ then the triangle is
A. Right angled triangle.
B. Isosceles
C. Right angled or isosceles.
D. Right angled isosceles.
Answer
163.8k+ views
Hint: To solve this question, we will first take the given equation and reciprocate it. After this we will apply componendo and dividendo and simplify it using trigonometric formulas. After this we will use sine Law $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$and cosine rules and deduce an equation which in terms will state the type of the triangle.
Formula used:
The cosine rules are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
\[\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}=\cos B\]
$\begin{align}
& \sin (A+B)+\sin (A-B)=2\sin A\cos B \\
& \sin (A+B)-\sin (A-B)=2\cos A\sin B \\
\end{align}$
Complete step-by-step solution:
We are given a triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and we have to determine the type of the triangle.
We will take the given equation $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and then reciprocate it first.
$\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}=\frac{\sin (A+B)}{\sin (A-B)}$
Now we will use componendo and dividendo on both the sides,
$\frac{{{a}^{2}}+{{b}^{2}}+{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}-({{a}^{2}}-{{b}^{2}})}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{2{{a}^{2}}}{2{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
We will now use the formula of
$\sin (A+B)+\sin (A-B)$and $\sin (A+B)-\sin (A-B)$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{2\sin A\cos B}{2\cos A\sin B} \\
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}
\end{align}$
Now we will take sine law$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ and equate it to some constant $\frac{1}{k}$. So the value of angles $\sin A$and $\sin B$will be,
$\begin{align}
& \sin A=ak \\
& \sin B=bk \\
\end{align}$
We will now substitute the value of angles $\sin A$and $\sin B$in $\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{ak\cos B}{bk\cos A} \\
& \frac{a}{b}=\frac{\cos B}{\cos A} \\
\end{align}$
We will now use cosine rule for the angle $\cos A$ and $\cos B$ and substitute it.
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\]
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{a}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{b}}\]
We will now simplify the equation,
\[\begin{align}
& \frac{a}{b}=\frac{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)b}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)a} \\
& \left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right){{a}^{2}}=\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right){{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}-{{a}^{4}}={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}-{{b}^{4}} \\
& {{a}^{2}}{{c}^{2}}-{{b}^{2}}{{c}^{2}}={{a}^{4}}-{{b}^{4}} \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})=({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}}) \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})-({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0 \\
& ({{a}^{2}}-{{b}^{2}})\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0
\end{align}\]
We will now equate both equation to zero.
\[({{a}^{2}}-{{b}^{2}})=0\] or \[\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0\]
$a=b$ or ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$
We know that $a=b$is the condition of an isosceles triangle and ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ is the condition for a right angled triangle.
The triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$, the triangle is either an isosceles triangle or a right angled triangle. Hence the correct option is (C).
Note:
The componendo and dividendo rule states that if \[\frac{a}{b}=\frac{c}{d}\] then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
In a right angled triangle, the relationship between the three sides $a,b,c$of the triangle is ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$.
Formula used:
The cosine rules are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
\[\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}=\cos B\]
$\begin{align}
& \sin (A+B)+\sin (A-B)=2\sin A\cos B \\
& \sin (A+B)-\sin (A-B)=2\cos A\sin B \\
\end{align}$
Complete step-by-step solution:
We are given a triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and we have to determine the type of the triangle.
We will take the given equation $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and then reciprocate it first.
$\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}=\frac{\sin (A+B)}{\sin (A-B)}$
Now we will use componendo and dividendo on both the sides,
$\frac{{{a}^{2}}+{{b}^{2}}+{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}-({{a}^{2}}-{{b}^{2}})}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{2{{a}^{2}}}{2{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
We will now use the formula of
$\sin (A+B)+\sin (A-B)$and $\sin (A+B)-\sin (A-B)$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{2\sin A\cos B}{2\cos A\sin B} \\
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}
\end{align}$
Now we will take sine law$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ and equate it to some constant $\frac{1}{k}$. So the value of angles $\sin A$and $\sin B$will be,
$\begin{align}
& \sin A=ak \\
& \sin B=bk \\
\end{align}$
We will now substitute the value of angles $\sin A$and $\sin B$in $\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{ak\cos B}{bk\cos A} \\
& \frac{a}{b}=\frac{\cos B}{\cos A} \\
\end{align}$
We will now use cosine rule for the angle $\cos A$ and $\cos B$ and substitute it.
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\]
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{a}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{b}}\]
We will now simplify the equation,
\[\begin{align}
& \frac{a}{b}=\frac{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)b}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)a} \\
& \left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right){{a}^{2}}=\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right){{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}-{{a}^{4}}={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}-{{b}^{4}} \\
& {{a}^{2}}{{c}^{2}}-{{b}^{2}}{{c}^{2}}={{a}^{4}}-{{b}^{4}} \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})=({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}}) \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})-({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0 \\
& ({{a}^{2}}-{{b}^{2}})\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0
\end{align}\]
We will now equate both equation to zero.
\[({{a}^{2}}-{{b}^{2}})=0\] or \[\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0\]
$a=b$ or ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$
We know that $a=b$is the condition of an isosceles triangle and ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ is the condition for a right angled triangle.
The triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$, the triangle is either an isosceles triangle or a right angled triangle. Hence the correct option is (C).
Note:
The componendo and dividendo rule states that if \[\frac{a}{b}=\frac{c}{d}\] then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
In a right angled triangle, the relationship between the three sides $a,b,c$of the triangle is ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
