
if in triangle$\vartriangle ABC$,$\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ then the triangle is
A. Right angled triangle.
B. Isosceles
C. Right angled or isosceles.
D. Right angled isosceles.
Answer
233.1k+ views
Hint: To solve this question, we will first take the given equation and reciprocate it. After this we will apply componendo and dividendo and simplify it using trigonometric formulas. After this we will use sine Law $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$and cosine rules and deduce an equation which in terms will state the type of the triangle.
Formula used:
The cosine rules are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
\[\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}=\cos B\]
$\begin{align}
& \sin (A+B)+\sin (A-B)=2\sin A\cos B \\
& \sin (A+B)-\sin (A-B)=2\cos A\sin B \\
\end{align}$
Complete step-by-step solution:
We are given a triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and we have to determine the type of the triangle.
We will take the given equation $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and then reciprocate it first.
$\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}=\frac{\sin (A+B)}{\sin (A-B)}$
Now we will use componendo and dividendo on both the sides,
$\frac{{{a}^{2}}+{{b}^{2}}+{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}-({{a}^{2}}-{{b}^{2}})}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{2{{a}^{2}}}{2{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
We will now use the formula of
$\sin (A+B)+\sin (A-B)$and $\sin (A+B)-\sin (A-B)$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{2\sin A\cos B}{2\cos A\sin B} \\
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}
\end{align}$
Now we will take sine law$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ and equate it to some constant $\frac{1}{k}$. So the value of angles $\sin A$and $\sin B$will be,
$\begin{align}
& \sin A=ak \\
& \sin B=bk \\
\end{align}$
We will now substitute the value of angles $\sin A$and $\sin B$in $\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{ak\cos B}{bk\cos A} \\
& \frac{a}{b}=\frac{\cos B}{\cos A} \\
\end{align}$
We will now use cosine rule for the angle $\cos A$ and $\cos B$ and substitute it.
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\]
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{a}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{b}}\]
We will now simplify the equation,
\[\begin{align}
& \frac{a}{b}=\frac{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)b}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)a} \\
& \left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right){{a}^{2}}=\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right){{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}-{{a}^{4}}={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}-{{b}^{4}} \\
& {{a}^{2}}{{c}^{2}}-{{b}^{2}}{{c}^{2}}={{a}^{4}}-{{b}^{4}} \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})=({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}}) \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})-({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0 \\
& ({{a}^{2}}-{{b}^{2}})\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0
\end{align}\]
We will now equate both equation to zero.
\[({{a}^{2}}-{{b}^{2}})=0\] or \[\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0\]
$a=b$ or ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$
We know that $a=b$is the condition of an isosceles triangle and ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ is the condition for a right angled triangle.
The triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$, the triangle is either an isosceles triangle or a right angled triangle. Hence the correct option is (C).
Note:
The componendo and dividendo rule states that if \[\frac{a}{b}=\frac{c}{d}\] then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
In a right angled triangle, the relationship between the three sides $a,b,c$of the triangle is ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$.
Formula used:
The cosine rules are:
\[\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}=\cos A\]
\[\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}=\cos B\]
$\begin{align}
& \sin (A+B)+\sin (A-B)=2\sin A\cos B \\
& \sin (A+B)-\sin (A-B)=2\cos A\sin B \\
\end{align}$
Complete step-by-step solution:
We are given a triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and we have to determine the type of the triangle.
We will take the given equation $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$ and then reciprocate it first.
$\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}-{{b}^{2}}}=\frac{\sin (A+B)}{\sin (A-B)}$
Now we will use componendo and dividendo on both the sides,
$\frac{{{a}^{2}}+{{b}^{2}}+{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}-({{a}^{2}}-{{b}^{2}})}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{2{{a}^{2}}}{2{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
$\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)}$
We will now use the formula of
$\sin (A+B)+\sin (A-B)$and $\sin (A+B)-\sin (A-B)$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{2\sin A\cos B}{2\cos A\sin B} \\
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}
\end{align}$
Now we will take sine law$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ and equate it to some constant $\frac{1}{k}$. So the value of angles $\sin A$and $\sin B$will be,
$\begin{align}
& \sin A=ak \\
& \sin B=bk \\
\end{align}$
We will now substitute the value of angles $\sin A$and $\sin B$in $\frac{{{a}^{2}}}{{{b}^{2}}}=\frac{\sin A\cos B}{\cos A\sin B}$.
$\begin{align}
& \frac{{{a}^{2}}}{{{b}^{2}}}=\frac{ak\cos B}{bk\cos A} \\
& \frac{a}{b}=\frac{\cos B}{\cos A} \\
\end{align}$
We will now use cosine rule for the angle $\cos A$ and $\cos B$ and substitute it.
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{2ac}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}\]
\[\frac{a}{b}=\frac{\frac{{{a}^{2}}+{{c}^{2}}-{{b}^{2}}}{a}}{\frac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{b}}\]
We will now simplify the equation,
\[\begin{align}
& \frac{a}{b}=\frac{\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right)b}{\left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right)a} \\
& \left( {{b}^{2}}+{{c}^{2}}-{{a}^{2}} \right){{a}^{2}}=\left( {{a}^{2}}+{{c}^{2}}-{{b}^{2}} \right){{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}-{{a}^{4}}={{a}^{2}}{{b}^{2}}+{{b}^{2}}{{c}^{2}}-{{b}^{4}} \\
& {{a}^{2}}{{c}^{2}}-{{b}^{2}}{{c}^{2}}={{a}^{4}}-{{b}^{4}} \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})=({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}}) \\
& {{c}^{2}}({{a}^{2}}-{{b}^{2}})-({{a}^{2}}-{{b}^{2}})({{a}^{2}}+{{b}^{2}})=0 \\
& ({{a}^{2}}-{{b}^{2}})\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0
\end{align}\]
We will now equate both equation to zero.
\[({{a}^{2}}-{{b}^{2}})=0\] or \[\left[ {{c}^{2}}-({{a}^{2}}+{{b}^{2}}) \right]=0\]
$a=b$ or ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$
We know that $a=b$is the condition of an isosceles triangle and ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$ is the condition for a right angled triangle.
The triangle $\vartriangle ABC$ for which $\frac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}=\frac{\sin (A-B)}{\sin (A+B)}$, the triangle is either an isosceles triangle or a right angled triangle. Hence the correct option is (C).
Note:
The componendo and dividendo rule states that if \[\frac{a}{b}=\frac{c}{d}\] then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$.
In a right angled triangle, the relationship between the three sides $a,b,c$of the triangle is ${{c}^{2}}={{a}^{2}}+{{b}^{2}}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

