
If in a triangle$\vartriangle ABC$ , $\cos A+2\cos B+\cos C=2$, then $a,b,c$ are in :
A. A.P
B. H.P
C. G.P
D. None of these.
Answer
163.8k+ views
Hint: We will use the angle sum property of the triangle according to which the total sum of the angles in a triangle is ${{180}^{o}}$.
The numbers $a,b,c$ are said to be in A.P if $a+c=2b$.
Formula Used: The half angle formula of sine and cosine are:
$\begin{align}
& \cos \theta =1-2{{\sin }^{2}}\dfrac{\theta }{2} \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
\end{align}$
The other formula of cosine which will be used is:
\[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)2\cos \left( \dfrac{C-D}{2} \right)\]
\[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]
Complete step by step solution: We are given a triangle $\vartriangle ABC$ for which $\cos A+2\cos B+\cos C=2$ and we have to find $a,b,c$ are in which series progression from the options.
First we will use the angle sum property for the triangle $\vartriangle ABC$,
So,
$A+B+C={{180}^{0}}$………(i)
Now we will take the given equation,
$\begin{align}
& \cos A+2\cos B+\cos C=2 \\
& \cos A+\cos C=2-2\cos B \\
& \cos A+\cos C=2(1-\cos B)
\end{align}$
We will now use formula,
$\begin{align}
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 2{{\sin }^{2}}\dfrac{B}{2} \right) \\
& \cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2}
\end{align}$
Using equation (i) we will derive the value of $(A+C)$,
$\begin{align}
& A+B+C=\pi \\
& A+C=\pi -B \\
\end{align}$
We will now substitute this value,
$\begin{align}
& \cos \left( \dfrac{\pi -B}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \cos \left( \dfrac{\pi }{2}-\dfrac{B}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \sin \dfrac{B}{2}\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}
\end{align}$
We will now multiply the above equation by $2\cos \dfrac{B}{2}$on both sides,
$2\cos \dfrac{B}{2}\cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}\left( 2\cos \dfrac{B}{2} \right)$
We will derive the value of $B$from equation (i),
$\begin{align}
& A+B+C=\pi \\
& B=\pi -(A+C) \\
\end{align}$
Now we will substitute the value of $B$we derived,
\[\begin{align}
& 2\cos \dfrac{\pi -(A+C)}{2}\cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}\left( 2\cos \dfrac{B}{2} \right) \\
& 2\cos \left[ \dfrac{\pi }{2}-\dfrac{(A+C)}{2} \right]\cos \left( \dfrac{A-C}{2} \right)=2\left( 2\sin \dfrac{B}{2}\cos \dfrac{B}{2} \right) \\
& 2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( \sin B \right)
\end{align}\]
We will use the formula \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\],
\[\begin{align}
& \sin A+\sin C=2\sin B \\
& a+c=2b
\end{align}\]
Hence we can say that $a,b,c$ are in A.P.
The triangle $\vartriangle ABC$ for which $\cos A+2\cos B+\cos C=2$ , $a,b,c$ is in A.P. Hence the correct option is (A).
Note: The arithmetic progression or sequence is series or progression of a number in such a way that the difference between the consecutive numbers is constant. That is if $a,b,c$ are in A.P then $c-b=b-a$.
When we simplify this equation $c-b=b-a$, we get $a+c=2b$. Hence the condition of being in A.P is $a+c=2b$.
The numbers $a,b,c$ are said to be in A.P if $a+c=2b$.
Formula Used: The half angle formula of sine and cosine are:
$\begin{align}
& \cos \theta =1-2{{\sin }^{2}}\dfrac{\theta }{2} \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
\end{align}$
The other formula of cosine which will be used is:
\[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)2\cos \left( \dfrac{C-D}{2} \right)\]
\[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]
Complete step by step solution: We are given a triangle $\vartriangle ABC$ for which $\cos A+2\cos B+\cos C=2$ and we have to find $a,b,c$ are in which series progression from the options.
First we will use the angle sum property for the triangle $\vartriangle ABC$,
So,
$A+B+C={{180}^{0}}$………(i)
Now we will take the given equation,
$\begin{align}
& \cos A+2\cos B+\cos C=2 \\
& \cos A+\cos C=2-2\cos B \\
& \cos A+\cos C=2(1-\cos B)
\end{align}$
We will now use formula,
$\begin{align}
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 2{{\sin }^{2}}\dfrac{B}{2} \right) \\
& \cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2}
\end{align}$
Using equation (i) we will derive the value of $(A+C)$,
$\begin{align}
& A+B+C=\pi \\
& A+C=\pi -B \\
\end{align}$
We will now substitute this value,
$\begin{align}
& \cos \left( \dfrac{\pi -B}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \cos \left( \dfrac{\pi }{2}-\dfrac{B}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \sin \dfrac{B}{2}\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}
\end{align}$
We will now multiply the above equation by $2\cos \dfrac{B}{2}$on both sides,
$2\cos \dfrac{B}{2}\cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}\left( 2\cos \dfrac{B}{2} \right)$
We will derive the value of $B$from equation (i),
$\begin{align}
& A+B+C=\pi \\
& B=\pi -(A+C) \\
\end{align}$
Now we will substitute the value of $B$we derived,
\[\begin{align}
& 2\cos \dfrac{\pi -(A+C)}{2}\cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}\left( 2\cos \dfrac{B}{2} \right) \\
& 2\cos \left[ \dfrac{\pi }{2}-\dfrac{(A+C)}{2} \right]\cos \left( \dfrac{A-C}{2} \right)=2\left( 2\sin \dfrac{B}{2}\cos \dfrac{B}{2} \right) \\
& 2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( \sin B \right)
\end{align}\]
We will use the formula \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\],
\[\begin{align}
& \sin A+\sin C=2\sin B \\
& a+c=2b
\end{align}\]
Hence we can say that $a,b,c$ are in A.P.
The triangle $\vartriangle ABC$ for which $\cos A+2\cos B+\cos C=2$ , $a,b,c$ is in A.P. Hence the correct option is (A).
Note: The arithmetic progression or sequence is series or progression of a number in such a way that the difference between the consecutive numbers is constant. That is if $a,b,c$ are in A.P then $c-b=b-a$.
When we simplify this equation $c-b=b-a$, we get $a+c=2b$. Hence the condition of being in A.P is $a+c=2b$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
