
If in a triangle$\vartriangle ABC$ , $\cos A+2\cos B+\cos C=2$, then $a,b,c$ are in :
A. A.P
B. H.P
C. G.P
D. None of these.
Answer
161.7k+ views
Hint: We will use the angle sum property of the triangle according to which the total sum of the angles in a triangle is ${{180}^{o}}$.
The numbers $a,b,c$ are said to be in A.P if $a+c=2b$.
Formula Used: The half angle formula of sine and cosine are:
$\begin{align}
& \cos \theta =1-2{{\sin }^{2}}\dfrac{\theta }{2} \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
\end{align}$
The other formula of cosine which will be used is:
\[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)2\cos \left( \dfrac{C-D}{2} \right)\]
\[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]
Complete step by step solution: We are given a triangle $\vartriangle ABC$ for which $\cos A+2\cos B+\cos C=2$ and we have to find $a,b,c$ are in which series progression from the options.
First we will use the angle sum property for the triangle $\vartriangle ABC$,
So,
$A+B+C={{180}^{0}}$………(i)
Now we will take the given equation,
$\begin{align}
& \cos A+2\cos B+\cos C=2 \\
& \cos A+\cos C=2-2\cos B \\
& \cos A+\cos C=2(1-\cos B)
\end{align}$
We will now use formula,
$\begin{align}
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 2{{\sin }^{2}}\dfrac{B}{2} \right) \\
& \cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2}
\end{align}$
Using equation (i) we will derive the value of $(A+C)$,
$\begin{align}
& A+B+C=\pi \\
& A+C=\pi -B \\
\end{align}$
We will now substitute this value,
$\begin{align}
& \cos \left( \dfrac{\pi -B}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \cos \left( \dfrac{\pi }{2}-\dfrac{B}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \sin \dfrac{B}{2}\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}
\end{align}$
We will now multiply the above equation by $2\cos \dfrac{B}{2}$on both sides,
$2\cos \dfrac{B}{2}\cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}\left( 2\cos \dfrac{B}{2} \right)$
We will derive the value of $B$from equation (i),
$\begin{align}
& A+B+C=\pi \\
& B=\pi -(A+C) \\
\end{align}$
Now we will substitute the value of $B$we derived,
\[\begin{align}
& 2\cos \dfrac{\pi -(A+C)}{2}\cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}\left( 2\cos \dfrac{B}{2} \right) \\
& 2\cos \left[ \dfrac{\pi }{2}-\dfrac{(A+C)}{2} \right]\cos \left( \dfrac{A-C}{2} \right)=2\left( 2\sin \dfrac{B}{2}\cos \dfrac{B}{2} \right) \\
& 2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( \sin B \right)
\end{align}\]
We will use the formula \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\],
\[\begin{align}
& \sin A+\sin C=2\sin B \\
& a+c=2b
\end{align}\]
Hence we can say that $a,b,c$ are in A.P.
The triangle $\vartriangle ABC$ for which $\cos A+2\cos B+\cos C=2$ , $a,b,c$ is in A.P. Hence the correct option is (A).
Note: The arithmetic progression or sequence is series or progression of a number in such a way that the difference between the consecutive numbers is constant. That is if $a,b,c$ are in A.P then $c-b=b-a$.
When we simplify this equation $c-b=b-a$, we get $a+c=2b$. Hence the condition of being in A.P is $a+c=2b$.
The numbers $a,b,c$ are said to be in A.P if $a+c=2b$.
Formula Used: The half angle formula of sine and cosine are:
$\begin{align}
& \cos \theta =1-2{{\sin }^{2}}\dfrac{\theta }{2} \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
\end{align}$
The other formula of cosine which will be used is:
\[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)2\cos \left( \dfrac{C-D}{2} \right)\]
\[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]
Complete step by step solution: We are given a triangle $\vartriangle ABC$ for which $\cos A+2\cos B+\cos C=2$ and we have to find $a,b,c$ are in which series progression from the options.
First we will use the angle sum property for the triangle $\vartriangle ABC$,
So,
$A+B+C={{180}^{0}}$………(i)
Now we will take the given equation,
$\begin{align}
& \cos A+2\cos B+\cos C=2 \\
& \cos A+\cos C=2-2\cos B \\
& \cos A+\cos C=2(1-\cos B)
\end{align}$
We will now use formula,
$\begin{align}
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 1-\left( 1-2{{\sin }^{2}}\dfrac{B}{2} \right) \right) \\
& 2\cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( 2{{\sin }^{2}}\dfrac{B}{2} \right) \\
& \cos \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2}
\end{align}$
Using equation (i) we will derive the value of $(A+C)$,
$\begin{align}
& A+B+C=\pi \\
& A+C=\pi -B \\
\end{align}$
We will now substitute this value,
$\begin{align}
& \cos \left( \dfrac{\pi -B}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \cos \left( \dfrac{\pi }{2}-\dfrac{B}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \sin \dfrac{B}{2}\cos \left( \dfrac{A-C}{2} \right)=2{{\sin }^{2}}\dfrac{B}{2} \\
& \cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}
\end{align}$
We will now multiply the above equation by $2\cos \dfrac{B}{2}$on both sides,
$2\cos \dfrac{B}{2}\cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}\left( 2\cos \dfrac{B}{2} \right)$
We will derive the value of $B$from equation (i),
$\begin{align}
& A+B+C=\pi \\
& B=\pi -(A+C) \\
\end{align}$
Now we will substitute the value of $B$we derived,
\[\begin{align}
& 2\cos \dfrac{\pi -(A+C)}{2}\cos \left( \dfrac{A-C}{2} \right)=2\sin \dfrac{B}{2}\left( 2\cos \dfrac{B}{2} \right) \\
& 2\cos \left[ \dfrac{\pi }{2}-\dfrac{(A+C)}{2} \right]\cos \left( \dfrac{A-C}{2} \right)=2\left( 2\sin \dfrac{B}{2}\cos \dfrac{B}{2} \right) \\
& 2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\left( \sin B \right)
\end{align}\]
We will use the formula \[\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\],
\[\begin{align}
& \sin A+\sin C=2\sin B \\
& a+c=2b
\end{align}\]
Hence we can say that $a,b,c$ are in A.P.
The triangle $\vartriangle ABC$ for which $\cos A+2\cos B+\cos C=2$ , $a,b,c$ is in A.P. Hence the correct option is (A).
Note: The arithmetic progression or sequence is series or progression of a number in such a way that the difference between the consecutive numbers is constant. That is if $a,b,c$ are in A.P then $c-b=b-a$.
When we simplify this equation $c-b=b-a$, we get $a+c=2b$. Hence the condition of being in A.P is $a+c=2b$.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

JEE Main 2024 Cut-off for NIT Surathkal

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
