
If in a triangle $\vartriangle ABC$ , $\cos 3A+\cos 3B+\cos 3C=1$, then one angle must be exactly equal to:
A. ${{90}^{o}}$
B. ${{45}^{o}}$
C. ${{120}^{0}}$
D. None of these.
Answer
163.5k+ views
Hint: We will use the angle sum property of the triangle according to which the total sum of the angles in a triangle is ${{180}^{o}}$.
We will then multiply the equation by $3$, and then write the equation in terms of one of the angles. Using a given equation, we will use a substitution method and trigonometric formulas to derive the value of one of the angles.
Formula Used: The half angle formula of sine and cosine are:
$\begin{align}
& \cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}-1 \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
\end{align}$
The other formula of cosine which will be used is:
$\cos (a+b)=\cos a\cos b-\sin a\sin b$
Complete step by step solution: We are given a triangle $\vartriangle ABC$ for which $\cos 3A+\cos 3B+\cos 3C=1$ and we have to find the value of one of the angles.
First we will use the angle sum property for the triangle $\vartriangle ABC$,
So,
$A+B+C={{180}^{0}}$………(i)
We will multiply this equation by $3$ on both sides,
So the equation will be,
$3A+3B+3C={{540}^{0}}$
Now we will write this equation in terms of any of the angle,
$3C={{540}^{0}}-(3A+3B)$
We will take cosine on the both side,
$\cos \,3C=\cos \,\,({{540}^{0}}-(3A+3B))$
$\cos \,3C=\cos \,\,(3\pi -(3A+3B))$
$\cos \,3C=-\cos \,\,(3A+3B)$……(ii)
Now we will substitute equation (ii) in $\cos 3A+\cos 3B+\cos 3C=1$.
\[\begin{align}
& \cos 3A+\cos 3B+(-\cos (3A+3B))=1 \\
& \cos 3A+\cos 3B-\cos (3A+3B)=1 \\
& \cos 3A+\cos 3B-(\cos 3A\cos 3B-\sin 3A\sin 3B)=1 \\
& \cos 3A+\cos 3B-\cos 3A\cos 3B+\sin 3A\sin 3B=1
\end{align}\]
Taking $\cos 3A$ common,
\[\begin{align}
& \cos 3A-\cos 3A\cos 3B+\cos 3B+\sin 3A\sin 3B=1 \\
& \cos 3A(1-\cos 3B)+\cos 3B+\sin 3A\sin 3B=1 \\
& \cos 3A(1-\cos 3B)+\cos 3B+\sin 3A\sin 3B-1=0
\end{align}\]
Now we will take $\cos 3B$ common,
\[\begin{align}
& \cos 3A(1-\cos 3B)-1+\cos 3B+\sin 3A\sin 3B=0 \\
& \cos 3A(1-\cos 3B)-1(1-\cos 3B)+\sin 3A\sin 3B=0 \\
& (1-\cos 3B)(\cos 3A-1)+\sin 3A\sin 3B=0 \\
& -(1-\cos 3B)(1-\cos 3A)+\sin 3A\sin 3B=0
\end{align}\]
Now,
\[\sin 3A\sin 3B=(1-\cos 3B)(1-\cos 3A)\]
\[\dfrac{\sin 3A}{(1-\cos 3A)}=\dfrac{(1-\cos 3B)}{\sin 3B}\]
We will now use half angles formula on both the sides,
\[\dfrac{2\sin \dfrac{3A}{2}\cos \dfrac{3A}{2}}{1+2{{\cos }^{2}}\dfrac{3A}{2}-1}=\dfrac{1+2{{\cos }^{2}}\dfrac{3B}{2}-1}{2\sin \dfrac{3B}{2}\cos \dfrac{3B}{2}}\]
\[\dfrac{2\sin \dfrac{3A}{2}\cos \dfrac{3A}{2}}{2{{\cos }^{2}}\dfrac{3A}{2}}=\dfrac{2{{\cos }^{2}}\dfrac{3B}{2}}{2\sin \dfrac{3B}{2}\cos \dfrac{3B}{2}}\]
\[\dfrac{\sin \dfrac{3A}{2}}{\cos \dfrac{3A}{2}}=\dfrac{\cos \dfrac{3B}{2}}{\sin \dfrac{3B}{2}}\]
\[\tan \dfrac{3A}{2}=\cot \dfrac{3B}{2}\]
We can write $\cot $ in terms of $\tan $,
\[\begin{align}
& \tan \dfrac{3A}{2}=\tan (\dfrac{\pi }{2}-\dfrac{3B}{2}) \\
& \dfrac{3A}{2}=\dfrac{\pi }{2}-\dfrac{3B}{2}
\end{align}\]
$\begin{align}
& 3A=\pi -3B \\
& 3A+3B=\pi \\
& 3(A+B)=\pi \\
& A+B=\dfrac{\pi }{3}.................(iii)
\end{align}$
Substituting the equation (iii) in equation (i).
$\begin{align}
& \dfrac{\pi }{3}+C={{180}^{0}} \\
& {{60}^{0}}+C={{180}^{0}} \\
& C={{120}^{0}}
\end{align}$
The value of one of the angles of a triangle $\vartriangle ABC$ for which $\cos 3A+\cos 3B+\cos 3C=1$, then one of the angles is $C={{120}^{0}}$. Hence the correct option is (C).
Note: The formula of the cosine $\cos (3\pi -\theta )$is $-\cos \theta $ that is $\cos (3\pi -\theta )=-\cos \theta $.
We will then multiply the equation by $3$, and then write the equation in terms of one of the angles. Using a given equation, we will use a substitution method and trigonometric formulas to derive the value of one of the angles.
Formula Used: The half angle formula of sine and cosine are:
$\begin{align}
& \cos \theta =2{{\cos }^{2}}\dfrac{\theta }{2}-1 \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
\end{align}$
The other formula of cosine which will be used is:
$\cos (a+b)=\cos a\cos b-\sin a\sin b$
Complete step by step solution: We are given a triangle $\vartriangle ABC$ for which $\cos 3A+\cos 3B+\cos 3C=1$ and we have to find the value of one of the angles.
First we will use the angle sum property for the triangle $\vartriangle ABC$,
So,
$A+B+C={{180}^{0}}$………(i)
We will multiply this equation by $3$ on both sides,
So the equation will be,
$3A+3B+3C={{540}^{0}}$
Now we will write this equation in terms of any of the angle,
$3C={{540}^{0}}-(3A+3B)$
We will take cosine on the both side,
$\cos \,3C=\cos \,\,({{540}^{0}}-(3A+3B))$
$\cos \,3C=\cos \,\,(3\pi -(3A+3B))$
$\cos \,3C=-\cos \,\,(3A+3B)$……(ii)
Now we will substitute equation (ii) in $\cos 3A+\cos 3B+\cos 3C=1$.
\[\begin{align}
& \cos 3A+\cos 3B+(-\cos (3A+3B))=1 \\
& \cos 3A+\cos 3B-\cos (3A+3B)=1 \\
& \cos 3A+\cos 3B-(\cos 3A\cos 3B-\sin 3A\sin 3B)=1 \\
& \cos 3A+\cos 3B-\cos 3A\cos 3B+\sin 3A\sin 3B=1
\end{align}\]
Taking $\cos 3A$ common,
\[\begin{align}
& \cos 3A-\cos 3A\cos 3B+\cos 3B+\sin 3A\sin 3B=1 \\
& \cos 3A(1-\cos 3B)+\cos 3B+\sin 3A\sin 3B=1 \\
& \cos 3A(1-\cos 3B)+\cos 3B+\sin 3A\sin 3B-1=0
\end{align}\]
Now we will take $\cos 3B$ common,
\[\begin{align}
& \cos 3A(1-\cos 3B)-1+\cos 3B+\sin 3A\sin 3B=0 \\
& \cos 3A(1-\cos 3B)-1(1-\cos 3B)+\sin 3A\sin 3B=0 \\
& (1-\cos 3B)(\cos 3A-1)+\sin 3A\sin 3B=0 \\
& -(1-\cos 3B)(1-\cos 3A)+\sin 3A\sin 3B=0
\end{align}\]
Now,
\[\sin 3A\sin 3B=(1-\cos 3B)(1-\cos 3A)\]
\[\dfrac{\sin 3A}{(1-\cos 3A)}=\dfrac{(1-\cos 3B)}{\sin 3B}\]
We will now use half angles formula on both the sides,
\[\dfrac{2\sin \dfrac{3A}{2}\cos \dfrac{3A}{2}}{1+2{{\cos }^{2}}\dfrac{3A}{2}-1}=\dfrac{1+2{{\cos }^{2}}\dfrac{3B}{2}-1}{2\sin \dfrac{3B}{2}\cos \dfrac{3B}{2}}\]
\[\dfrac{2\sin \dfrac{3A}{2}\cos \dfrac{3A}{2}}{2{{\cos }^{2}}\dfrac{3A}{2}}=\dfrac{2{{\cos }^{2}}\dfrac{3B}{2}}{2\sin \dfrac{3B}{2}\cos \dfrac{3B}{2}}\]
\[\dfrac{\sin \dfrac{3A}{2}}{\cos \dfrac{3A}{2}}=\dfrac{\cos \dfrac{3B}{2}}{\sin \dfrac{3B}{2}}\]
\[\tan \dfrac{3A}{2}=\cot \dfrac{3B}{2}\]
We can write $\cot $ in terms of $\tan $,
\[\begin{align}
& \tan \dfrac{3A}{2}=\tan (\dfrac{\pi }{2}-\dfrac{3B}{2}) \\
& \dfrac{3A}{2}=\dfrac{\pi }{2}-\dfrac{3B}{2}
\end{align}\]
$\begin{align}
& 3A=\pi -3B \\
& 3A+3B=\pi \\
& 3(A+B)=\pi \\
& A+B=\dfrac{\pi }{3}.................(iii)
\end{align}$
Substituting the equation (iii) in equation (i).
$\begin{align}
& \dfrac{\pi }{3}+C={{180}^{0}} \\
& {{60}^{0}}+C={{180}^{0}} \\
& C={{120}^{0}}
\end{align}$
The value of one of the angles of a triangle $\vartriangle ABC$ for which $\cos 3A+\cos 3B+\cos 3C=1$, then one of the angles is $C={{120}^{0}}$. Hence the correct option is (C).
Note: The formula of the cosine $\cos (3\pi -\theta )$is $-\cos \theta $ that is $\cos (3\pi -\theta )=-\cos \theta $.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
