
If in a triangle ABC, a = 5, b = 4, \[A = \dfrac{\pi }{2} + B\], then find C.
A. \[{\tan ^{ - 1}}\left( {\dfrac{1}{9}} \right)\]
B. \[{\tan ^{ - 1}}\left( {\dfrac{1}{{40}}} \right)\]
C. Cannot be evaluated
D. \[2{\tan ^{ - 1}}\left( {\dfrac{1}{9}} \right)\]
E. \[2{\tan ^{ - 1}}\left( {\dfrac{1}{{40}}} \right)\]
Answer
164.4k+ views
Hint: To solve this question, we will apply sine law in triangle ABC. In the sine law, we will substitute given data and calculate the value \[\tan B\]. Then using the value of \[\tan B\], we will calculate \[\tan A\]. By using the tangent of sum of two angles, we will calculate the value of C.
Formula used:
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
The sum of all angles of a triangle is \[\pi \].
Tangent of sum of two angles:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Trigonometry formula:
\[\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \]
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
Complete step by step solution:

Image: Triangle ABC
Applying sine law in triangle ABC
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Substitute a = 5, b = 4, \[A = \dfrac{\pi }{2} + B\]
\[\dfrac{{\sin \left( {\dfrac{\pi }{2} + B} \right)}}{5} = \dfrac{{\sin B}}{4} = \dfrac{{\sin C}}{c}\]
Taking first two ratios
\[\dfrac{{\sin \left( {\dfrac{\pi }{2} + B} \right)}}{5} = \dfrac{{\sin B}}{4}\]
Now applying the formula \[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
\[ \Rightarrow \dfrac{{\cos B}}{5} = \dfrac{{\sin B}}{4}\]
\[ \Rightarrow \dfrac{4}{5} = \dfrac{{\sin B}}{{\cos B}}\]
\[ \Rightarrow \dfrac{4}{5} = \tan B\]
Given that, \[A = \dfrac{\pi }{2} + B\].
Take tangent both sides
\[\tan A = \tan \left( {\dfrac{\pi }{2} + B} \right)\]
Now applying \[\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \]
\[\tan A = - \cot B\]
\[\tan A = - \dfrac{1}{{\tan B}}\]
Substitute \[\dfrac{4}{5} = \tan B\]
\[\tan A = - \dfrac{5}{4}\]
We know that, the sum of all angles of a triangle is \[\pi \].
Thus \[A + B + C = \pi \]
\[ \Rightarrow C = \pi - \left( {A + B} \right)\]
Take tangent both sides of the equation
\[ \Rightarrow \tan C = \tan \left( {\pi - \left( {A + B} \right)} \right)\]
Now applying \[\tan \left( {\pi - \theta } \right) = - \tan \theta \]
\[ \Rightarrow \tan C = - \tan \left( {A + B} \right)\]
Now applying the tangent of sum of two angles on the right side expression
\[ \Rightarrow \tan C = - \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Now substitute \[\tan A = - \dfrac{5}{4}\] and \[\tan B = \dfrac{4}{5}\]
\[ \Rightarrow \tan C = - \dfrac{{ - \dfrac{5}{4} + \dfrac{4}{5}}}{{1 - \left( { - \dfrac{5}{4}} \right) \cdot \dfrac{4}{5}}}\]
\[ \Rightarrow \tan C = - \dfrac{{\dfrac{{ - 25 + 16}}{{20}}}}{{1 + 1}}\]
\[ \Rightarrow \tan C = - \dfrac{{ - 9}}{{2 \cdot 20}}\]
\[ \Rightarrow \tan C = \dfrac{9}{{40}}\]
\[ \Rightarrow C = {\tan ^{ - 1}}\left( {\dfrac{9}{{40}}} \right)\]
Simplify the above equation
\[ \Rightarrow C = {\tan ^{ - 1}}\left( {\dfrac{{\left( {2 \cdot \dfrac{1}{9}} \right)}}{{1 - {{\left( {\dfrac{1}{9}} \right)}^2}}}} \right)\]
Applying the formula \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\]
\[ \Rightarrow C = 2{\tan ^{ - 1}}\left( {\dfrac{1}{9}} \right)\]
Hence option D is the correct option.
Note: Students often make mistakes to apply the formula tangent inverse. They use \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] which is an incorrect formula. The correct formula is \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\].
Formula used:
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
The sum of all angles of a triangle is \[\pi \].
Tangent of sum of two angles:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Trigonometry formula:
\[\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \]
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
Complete step by step solution:

Image: Triangle ABC
Applying sine law in triangle ABC
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Substitute a = 5, b = 4, \[A = \dfrac{\pi }{2} + B\]
\[\dfrac{{\sin \left( {\dfrac{\pi }{2} + B} \right)}}{5} = \dfrac{{\sin B}}{4} = \dfrac{{\sin C}}{c}\]
Taking first two ratios
\[\dfrac{{\sin \left( {\dfrac{\pi }{2} + B} \right)}}{5} = \dfrac{{\sin B}}{4}\]
Now applying the formula \[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
\[ \Rightarrow \dfrac{{\cos B}}{5} = \dfrac{{\sin B}}{4}\]
\[ \Rightarrow \dfrac{4}{5} = \dfrac{{\sin B}}{{\cos B}}\]
\[ \Rightarrow \dfrac{4}{5} = \tan B\]
Given that, \[A = \dfrac{\pi }{2} + B\].
Take tangent both sides
\[\tan A = \tan \left( {\dfrac{\pi }{2} + B} \right)\]
Now applying \[\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \]
\[\tan A = - \cot B\]
\[\tan A = - \dfrac{1}{{\tan B}}\]
Substitute \[\dfrac{4}{5} = \tan B\]
\[\tan A = - \dfrac{5}{4}\]
We know that, the sum of all angles of a triangle is \[\pi \].
Thus \[A + B + C = \pi \]
\[ \Rightarrow C = \pi - \left( {A + B} \right)\]
Take tangent both sides of the equation
\[ \Rightarrow \tan C = \tan \left( {\pi - \left( {A + B} \right)} \right)\]
Now applying \[\tan \left( {\pi - \theta } \right) = - \tan \theta \]
\[ \Rightarrow \tan C = - \tan \left( {A + B} \right)\]
Now applying the tangent of sum of two angles on the right side expression
\[ \Rightarrow \tan C = - \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Now substitute \[\tan A = - \dfrac{5}{4}\] and \[\tan B = \dfrac{4}{5}\]
\[ \Rightarrow \tan C = - \dfrac{{ - \dfrac{5}{4} + \dfrac{4}{5}}}{{1 - \left( { - \dfrac{5}{4}} \right) \cdot \dfrac{4}{5}}}\]
\[ \Rightarrow \tan C = - \dfrac{{\dfrac{{ - 25 + 16}}{{20}}}}{{1 + 1}}\]
\[ \Rightarrow \tan C = - \dfrac{{ - 9}}{{2 \cdot 20}}\]
\[ \Rightarrow \tan C = \dfrac{9}{{40}}\]
\[ \Rightarrow C = {\tan ^{ - 1}}\left( {\dfrac{9}{{40}}} \right)\]
Simplify the above equation
\[ \Rightarrow C = {\tan ^{ - 1}}\left( {\dfrac{{\left( {2 \cdot \dfrac{1}{9}} \right)}}{{1 - {{\left( {\dfrac{1}{9}} \right)}^2}}}} \right)\]
Applying the formula \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\]
\[ \Rightarrow C = 2{\tan ^{ - 1}}\left( {\dfrac{1}{9}} \right)\]
Hence option D is the correct option.
Note: Students often make mistakes to apply the formula tangent inverse. They use \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] which is an incorrect formula. The correct formula is \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
