
If in a triangle ABC, a = 5, b = 4, \[A = \dfrac{\pi }{2} + B\], then find C.
A. \[{\tan ^{ - 1}}\left( {\dfrac{1}{9}} \right)\]
B. \[{\tan ^{ - 1}}\left( {\dfrac{1}{{40}}} \right)\]
C. Cannot be evaluated
D. \[2{\tan ^{ - 1}}\left( {\dfrac{1}{9}} \right)\]
E. \[2{\tan ^{ - 1}}\left( {\dfrac{1}{{40}}} \right)\]
Answer
232.8k+ views
Hint: To solve this question, we will apply sine law in triangle ABC. In the sine law, we will substitute given data and calculate the value \[\tan B\]. Then using the value of \[\tan B\], we will calculate \[\tan A\]. By using the tangent of sum of two angles, we will calculate the value of C.
Formula used:
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
The sum of all angles of a triangle is \[\pi \].
Tangent of sum of two angles:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Trigonometry formula:
\[\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \]
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
Complete step by step solution:

Image: Triangle ABC
Applying sine law in triangle ABC
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Substitute a = 5, b = 4, \[A = \dfrac{\pi }{2} + B\]
\[\dfrac{{\sin \left( {\dfrac{\pi }{2} + B} \right)}}{5} = \dfrac{{\sin B}}{4} = \dfrac{{\sin C}}{c}\]
Taking first two ratios
\[\dfrac{{\sin \left( {\dfrac{\pi }{2} + B} \right)}}{5} = \dfrac{{\sin B}}{4}\]
Now applying the formula \[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
\[ \Rightarrow \dfrac{{\cos B}}{5} = \dfrac{{\sin B}}{4}\]
\[ \Rightarrow \dfrac{4}{5} = \dfrac{{\sin B}}{{\cos B}}\]
\[ \Rightarrow \dfrac{4}{5} = \tan B\]
Given that, \[A = \dfrac{\pi }{2} + B\].
Take tangent both sides
\[\tan A = \tan \left( {\dfrac{\pi }{2} + B} \right)\]
Now applying \[\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \]
\[\tan A = - \cot B\]
\[\tan A = - \dfrac{1}{{\tan B}}\]
Substitute \[\dfrac{4}{5} = \tan B\]
\[\tan A = - \dfrac{5}{4}\]
We know that, the sum of all angles of a triangle is \[\pi \].
Thus \[A + B + C = \pi \]
\[ \Rightarrow C = \pi - \left( {A + B} \right)\]
Take tangent both sides of the equation
\[ \Rightarrow \tan C = \tan \left( {\pi - \left( {A + B} \right)} \right)\]
Now applying \[\tan \left( {\pi - \theta } \right) = - \tan \theta \]
\[ \Rightarrow \tan C = - \tan \left( {A + B} \right)\]
Now applying the tangent of sum of two angles on the right side expression
\[ \Rightarrow \tan C = - \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Now substitute \[\tan A = - \dfrac{5}{4}\] and \[\tan B = \dfrac{4}{5}\]
\[ \Rightarrow \tan C = - \dfrac{{ - \dfrac{5}{4} + \dfrac{4}{5}}}{{1 - \left( { - \dfrac{5}{4}} \right) \cdot \dfrac{4}{5}}}\]
\[ \Rightarrow \tan C = - \dfrac{{\dfrac{{ - 25 + 16}}{{20}}}}{{1 + 1}}\]
\[ \Rightarrow \tan C = - \dfrac{{ - 9}}{{2 \cdot 20}}\]
\[ \Rightarrow \tan C = \dfrac{9}{{40}}\]
\[ \Rightarrow C = {\tan ^{ - 1}}\left( {\dfrac{9}{{40}}} \right)\]
Simplify the above equation
\[ \Rightarrow C = {\tan ^{ - 1}}\left( {\dfrac{{\left( {2 \cdot \dfrac{1}{9}} \right)}}{{1 - {{\left( {\dfrac{1}{9}} \right)}^2}}}} \right)\]
Applying the formula \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\]
\[ \Rightarrow C = 2{\tan ^{ - 1}}\left( {\dfrac{1}{9}} \right)\]
Hence option D is the correct option.
Note: Students often make mistakes to apply the formula tangent inverse. They use \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] which is an incorrect formula. The correct formula is \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\].
Formula used:
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
The sum of all angles of a triangle is \[\pi \].
Tangent of sum of two angles:
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Trigonometry formula:
\[\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \]
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
Complete step by step solution:

Image: Triangle ABC
Applying sine law in triangle ABC
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Substitute a = 5, b = 4, \[A = \dfrac{\pi }{2} + B\]
\[\dfrac{{\sin \left( {\dfrac{\pi }{2} + B} \right)}}{5} = \dfrac{{\sin B}}{4} = \dfrac{{\sin C}}{c}\]
Taking first two ratios
\[\dfrac{{\sin \left( {\dfrac{\pi }{2} + B} \right)}}{5} = \dfrac{{\sin B}}{4}\]
Now applying the formula \[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
\[ \Rightarrow \dfrac{{\cos B}}{5} = \dfrac{{\sin B}}{4}\]
\[ \Rightarrow \dfrac{4}{5} = \dfrac{{\sin B}}{{\cos B}}\]
\[ \Rightarrow \dfrac{4}{5} = \tan B\]
Given that, \[A = \dfrac{\pi }{2} + B\].
Take tangent both sides
\[\tan A = \tan \left( {\dfrac{\pi }{2} + B} \right)\]
Now applying \[\tan \left( {\dfrac{\pi }{2} + \theta } \right) = - \cot \theta \]
\[\tan A = - \cot B\]
\[\tan A = - \dfrac{1}{{\tan B}}\]
Substitute \[\dfrac{4}{5} = \tan B\]
\[\tan A = - \dfrac{5}{4}\]
We know that, the sum of all angles of a triangle is \[\pi \].
Thus \[A + B + C = \pi \]
\[ \Rightarrow C = \pi - \left( {A + B} \right)\]
Take tangent both sides of the equation
\[ \Rightarrow \tan C = \tan \left( {\pi - \left( {A + B} \right)} \right)\]
Now applying \[\tan \left( {\pi - \theta } \right) = - \tan \theta \]
\[ \Rightarrow \tan C = - \tan \left( {A + B} \right)\]
Now applying the tangent of sum of two angles on the right side expression
\[ \Rightarrow \tan C = - \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Now substitute \[\tan A = - \dfrac{5}{4}\] and \[\tan B = \dfrac{4}{5}\]
\[ \Rightarrow \tan C = - \dfrac{{ - \dfrac{5}{4} + \dfrac{4}{5}}}{{1 - \left( { - \dfrac{5}{4}} \right) \cdot \dfrac{4}{5}}}\]
\[ \Rightarrow \tan C = - \dfrac{{\dfrac{{ - 25 + 16}}{{20}}}}{{1 + 1}}\]
\[ \Rightarrow \tan C = - \dfrac{{ - 9}}{{2 \cdot 20}}\]
\[ \Rightarrow \tan C = \dfrac{9}{{40}}\]
\[ \Rightarrow C = {\tan ^{ - 1}}\left( {\dfrac{9}{{40}}} \right)\]
Simplify the above equation
\[ \Rightarrow C = {\tan ^{ - 1}}\left( {\dfrac{{\left( {2 \cdot \dfrac{1}{9}} \right)}}{{1 - {{\left( {\dfrac{1}{9}} \right)}^2}}}} \right)\]
Applying the formula \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\]
\[ \Rightarrow C = 2{\tan ^{ - 1}}\left( {\dfrac{1}{9}} \right)\]
Hence option D is the correct option.
Note: Students often make mistakes to apply the formula tangent inverse. They use \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)\] which is an incorrect formula. The correct formula is \[2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

