
If \[f(x)=2x+|x|\],~\[g(x)=\dfrac{1}{3}(2x-|x|)\] and $h(x)=f(g(x))$ then domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ is
A. $\left[ -1,1 \right]$
B. \[\left[ -1,-\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},1 \right]\]
C. \[\left[ -1,-\dfrac{1}{2} \right]\]
D. \[\left[ \dfrac{1}{2},1 \right]\]
Answer
160.8k+ views
Hint: To solve this question, we will consider both the functions \[f(x)=2x+|x|\] and \[g(x)=\dfrac{1}{3}(2x-|x|)\] and write it as a piecewise function. Then we will derive the value of function $h(x)=f(g(x))$ by using both the functions. After finding the value of $h(x)$, we will substitute its value in ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ and determine its domain.
Complete step by step solution: We are given functions \[f(x)=2x+|x|\],\[g(x)=\dfrac{1}{3}(2x-|x|)\],$h(x)=f(g(x))$ and we have to determine the domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$.
As we know that absolute function is defined as a piecewise function with sub-functions on different intervals we will define the functions \[f(x)=2x+|x|\] and \[g(x)=\dfrac{1}{3}(2x-|x|)\] as a piecewise function.
We have absolute value $|x|$, so we will write both the functions as \[f(x)=\left\{ \begin{matrix}
2x+x,x\ge 0 \\
2x-x,x<0 \\
\end{matrix} \right.=\left\{ \begin{matrix}
3x,x\ge 0 \\
x,x<0 \\
\end{matrix} \right.\] and \[g(x)=\dfrac{1}{3}\left\{ \begin{matrix}
2x-x,x\ge 0 \\
2x+x,x<0 \\
\end{matrix} \right.=\left\{ \begin{matrix}
\dfrac{x}{3},x\ge 0 \\
x,x<0 \\
\end{matrix} \right.\].
So the function $h(x)=f(g(x))$ can be written as,
$\begin{align}
& h(x)=f(g(x)) \\
& =f\left( \left\{ \begin{matrix}
\dfrac{x}{3},x\ge 0 \\
x,x<0 \\
\end{matrix} \right. \right)
\end{align}$
$\begin{align}
& h(x)=\left\{ \begin{matrix}
3\left( \dfrac{x}{3} \right),x\ge 0 \\
x,x<0 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
x,x\ge 0 \\
x,x<0 \\
\end{matrix} \right.
\end{align}$
So we can say that the function $h(x)=x$ as $f(g(x))=x\forall x\in R$.
We will put the value of function $h(x)$ in ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$. So,
$\begin{align}
& ={{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes} \\
& ={{\sin }^{-1}}x \\
\end{align}$
Now we know that the domain is the set of all the input numbers which is accepted by that function and the domain of the trigonometric function sine inverse is $\left[ -1,1 \right]$.
So the domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ will also be $\left[ -1,1 \right]$.
The domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ is $\left[ -1,1 \right]$ when \[f(x)=2x+|x|\],\[g(x)=\dfrac{1}{3}(2x-|x|)\] and $h(x)=f(g(x))$.
So, Option ‘A’ is correct
Note: The modulus function $|x|$ which is also termed as an absolute value function gives the non-negative magnitude of a number. If we have a modulus function $f(x)=|x|$ then if the value of $x$ is negative then the function will give the same magnitude as $x$ that is $f(x)=-x$ and if $x$ is positive then the function will have a similar value as $x$ that is $f(x)=x$.
It is depicted as\[f(x)=|x|=\left\{ \begin{matrix}
x,x\ge 0 \\
-x,x<0 \\
\end{matrix} \right.\].
Complete step by step solution: We are given functions \[f(x)=2x+|x|\],\[g(x)=\dfrac{1}{3}(2x-|x|)\],$h(x)=f(g(x))$ and we have to determine the domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$.
As we know that absolute function is defined as a piecewise function with sub-functions on different intervals we will define the functions \[f(x)=2x+|x|\] and \[g(x)=\dfrac{1}{3}(2x-|x|)\] as a piecewise function.
We have absolute value $|x|$, so we will write both the functions as \[f(x)=\left\{ \begin{matrix}
2x+x,x\ge 0 \\
2x-x,x<0 \\
\end{matrix} \right.=\left\{ \begin{matrix}
3x,x\ge 0 \\
x,x<0 \\
\end{matrix} \right.\] and \[g(x)=\dfrac{1}{3}\left\{ \begin{matrix}
2x-x,x\ge 0 \\
2x+x,x<0 \\
\end{matrix} \right.=\left\{ \begin{matrix}
\dfrac{x}{3},x\ge 0 \\
x,x<0 \\
\end{matrix} \right.\].
So the function $h(x)=f(g(x))$ can be written as,
$\begin{align}
& h(x)=f(g(x)) \\
& =f\left( \left\{ \begin{matrix}
\dfrac{x}{3},x\ge 0 \\
x,x<0 \\
\end{matrix} \right. \right)
\end{align}$
$\begin{align}
& h(x)=\left\{ \begin{matrix}
3\left( \dfrac{x}{3} \right),x\ge 0 \\
x,x<0 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
x,x\ge 0 \\
x,x<0 \\
\end{matrix} \right.
\end{align}$
So we can say that the function $h(x)=x$ as $f(g(x))=x\forall x\in R$.
We will put the value of function $h(x)$ in ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$. So,
$\begin{align}
& ={{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes} \\
& ={{\sin }^{-1}}x \\
\end{align}$
Now we know that the domain is the set of all the input numbers which is accepted by that function and the domain of the trigonometric function sine inverse is $\left[ -1,1 \right]$.
So the domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ will also be $\left[ -1,1 \right]$.
The domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ is $\left[ -1,1 \right]$ when \[f(x)=2x+|x|\],\[g(x)=\dfrac{1}{3}(2x-|x|)\] and $h(x)=f(g(x))$.
So, Option ‘A’ is correct
Note: The modulus function $|x|$ which is also termed as an absolute value function gives the non-negative magnitude of a number. If we have a modulus function $f(x)=|x|$ then if the value of $x$ is negative then the function will give the same magnitude as $x$ that is $f(x)=-x$ and if $x$ is positive then the function will have a similar value as $x$ that is $f(x)=x$.
It is depicted as\[f(x)=|x|=\left\{ \begin{matrix}
x,x\ge 0 \\
-x,x<0 \\
\end{matrix} \right.\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
