
If \[f(x)=2x+|x|\],~\[g(x)=\dfrac{1}{3}(2x-|x|)\] and $h(x)=f(g(x))$ then domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ is
A. $\left[ -1,1 \right]$
B. \[\left[ -1,-\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},1 \right]\]
C. \[\left[ -1,-\dfrac{1}{2} \right]\]
D. \[\left[ \dfrac{1}{2},1 \right]\]
Answer
233.4k+ views
Hint: To solve this question, we will consider both the functions \[f(x)=2x+|x|\] and \[g(x)=\dfrac{1}{3}(2x-|x|)\] and write it as a piecewise function. Then we will derive the value of function $h(x)=f(g(x))$ by using both the functions. After finding the value of $h(x)$, we will substitute its value in ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ and determine its domain.
Complete step by step solution: We are given functions \[f(x)=2x+|x|\],\[g(x)=\dfrac{1}{3}(2x-|x|)\],$h(x)=f(g(x))$ and we have to determine the domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$.
As we know that absolute function is defined as a piecewise function with sub-functions on different intervals we will define the functions \[f(x)=2x+|x|\] and \[g(x)=\dfrac{1}{3}(2x-|x|)\] as a piecewise function.
We have absolute value $|x|$, so we will write both the functions as \[f(x)=\left\{ \begin{matrix}
2x+x,x\ge 0 \\
2x-x,x<0 \\
\end{matrix} \right.=\left\{ \begin{matrix}
3x,x\ge 0 \\
x,x<0 \\
\end{matrix} \right.\] and \[g(x)=\dfrac{1}{3}\left\{ \begin{matrix}
2x-x,x\ge 0 \\
2x+x,x<0 \\
\end{matrix} \right.=\left\{ \begin{matrix}
\dfrac{x}{3},x\ge 0 \\
x,x<0 \\
\end{matrix} \right.\].
So the function $h(x)=f(g(x))$ can be written as,
$\begin{align}
& h(x)=f(g(x)) \\
& =f\left( \left\{ \begin{matrix}
\dfrac{x}{3},x\ge 0 \\
x,x<0 \\
\end{matrix} \right. \right)
\end{align}$
$\begin{align}
& h(x)=\left\{ \begin{matrix}
3\left( \dfrac{x}{3} \right),x\ge 0 \\
x,x<0 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
x,x\ge 0 \\
x,x<0 \\
\end{matrix} \right.
\end{align}$
So we can say that the function $h(x)=x$ as $f(g(x))=x\forall x\in R$.
We will put the value of function $h(x)$ in ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$. So,
$\begin{align}
& ={{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes} \\
& ={{\sin }^{-1}}x \\
\end{align}$
Now we know that the domain is the set of all the input numbers which is accepted by that function and the domain of the trigonometric function sine inverse is $\left[ -1,1 \right]$.
So the domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ will also be $\left[ -1,1 \right]$.
The domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ is $\left[ -1,1 \right]$ when \[f(x)=2x+|x|\],\[g(x)=\dfrac{1}{3}(2x-|x|)\] and $h(x)=f(g(x))$.
So, Option ‘A’ is correct
Note: The modulus function $|x|$ which is also termed as an absolute value function gives the non-negative magnitude of a number. If we have a modulus function $f(x)=|x|$ then if the value of $x$ is negative then the function will give the same magnitude as $x$ that is $f(x)=-x$ and if $x$ is positive then the function will have a similar value as $x$ that is $f(x)=x$.
It is depicted as\[f(x)=|x|=\left\{ \begin{matrix}
x,x\ge 0 \\
-x,x<0 \\
\end{matrix} \right.\].
Complete step by step solution: We are given functions \[f(x)=2x+|x|\],\[g(x)=\dfrac{1}{3}(2x-|x|)\],$h(x)=f(g(x))$ and we have to determine the domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$.
As we know that absolute function is defined as a piecewise function with sub-functions on different intervals we will define the functions \[f(x)=2x+|x|\] and \[g(x)=\dfrac{1}{3}(2x-|x|)\] as a piecewise function.
We have absolute value $|x|$, so we will write both the functions as \[f(x)=\left\{ \begin{matrix}
2x+x,x\ge 0 \\
2x-x,x<0 \\
\end{matrix} \right.=\left\{ \begin{matrix}
3x,x\ge 0 \\
x,x<0 \\
\end{matrix} \right.\] and \[g(x)=\dfrac{1}{3}\left\{ \begin{matrix}
2x-x,x\ge 0 \\
2x+x,x<0 \\
\end{matrix} \right.=\left\{ \begin{matrix}
\dfrac{x}{3},x\ge 0 \\
x,x<0 \\
\end{matrix} \right.\].
So the function $h(x)=f(g(x))$ can be written as,
$\begin{align}
& h(x)=f(g(x)) \\
& =f\left( \left\{ \begin{matrix}
\dfrac{x}{3},x\ge 0 \\
x,x<0 \\
\end{matrix} \right. \right)
\end{align}$
$\begin{align}
& h(x)=\left\{ \begin{matrix}
3\left( \dfrac{x}{3} \right),x\ge 0 \\
x,x<0 \\
\end{matrix} \right. \\
& =\left\{ \begin{matrix}
x,x\ge 0 \\
x,x<0 \\
\end{matrix} \right.
\end{align}$
So we can say that the function $h(x)=x$ as $f(g(x))=x\forall x\in R$.
We will put the value of function $h(x)$ in ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$. So,
$\begin{align}
& ={{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes} \\
& ={{\sin }^{-1}}x \\
\end{align}$
Now we know that the domain is the set of all the input numbers which is accepted by that function and the domain of the trigonometric function sine inverse is $\left[ -1,1 \right]$.
So the domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ will also be $\left[ -1,1 \right]$.
The domain of ${{\sin }^{-1}}\underbrace{(h(h(h(h.....h(x).....))))}_{ntimes}$ is $\left[ -1,1 \right]$ when \[f(x)=2x+|x|\],\[g(x)=\dfrac{1}{3}(2x-|x|)\] and $h(x)=f(g(x))$.
So, Option ‘A’ is correct
Note: The modulus function $|x|$ which is also termed as an absolute value function gives the non-negative magnitude of a number. If we have a modulus function $f(x)=|x|$ then if the value of $x$ is negative then the function will give the same magnitude as $x$ that is $f(x)=-x$ and if $x$ is positive then the function will have a similar value as $x$ that is $f(x)=x$.
It is depicted as\[f(x)=|x|=\left\{ \begin{matrix}
x,x\ge 0 \\
-x,x<0 \\
\end{matrix} \right.\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

