
If for a real number $x$, $\left[ x \right]$ denotes the greatest integer less than or equal to $x$, then for any $n \in N,\left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{{n + 4}}{8}} \right] + \left[ {\dfrac{{n + 8}}{{16}}} \right] + ...... = $
A. $n$
B. $n - 1$
C. \[n + 1\]
D. \[n + 2\]
Answer
233.1k+ views
Hint:
Use the property of greatest integer function, $\left[ x \right] = \left[ {\dfrac{x}{2}} \right] + \left[ {\dfrac{{x + 1}}{2}} \right]$ and expand the value of $\left[ n \right]$, where $n$ is a natural number. Write $n$ as $\left[ {\dfrac{n}{2}} \right] + \left[ {\dfrac{{n + 1}}{2}} \right]$. Then, expand \[\left[ {\dfrac{n}{2}} \right]\] by the same property and continue like this to get an equivalent expression.
Complete step by step solution:
We know that if $\left[ x \right]$ is a greatest integer less than or equal to $x$, then we have $\left[ x \right] = \left[ {\dfrac{x}{2}} \right] + \left[ {\dfrac{{x + 1}}{2}} \right]$
Let us write the same definition for $\left[ n \right]$
$\left[ n \right] = \left[ {\dfrac{n}{2}} \right] + \left[ {\dfrac{{n + 1}}{2}} \right]$
Since, $n \in N$, we can write this as,
$n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{n}{2}} \right]$ eqn. (1)
Similarly, we can write,
$
\left[ {\dfrac{n}{2}} \right] = \left[ {\dfrac{n}{4}} \right] + \left[ {\dfrac{{\dfrac{n}{2} + 1}}{2}} \right] \\
\Rightarrow \left[ {\dfrac{n}{2}} \right] = \left[ {\dfrac{n}{4}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] \\
$
When we substitute the value of \[\left[ {\dfrac{n}{2}} \right]\] in equation (1), we will get,
$n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{n}{4}} \right]$
We will now similarly, expand \[\left[ {\dfrac{n}{4}} \right]\]
$
n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{n}{8}} \right] + \left[ {\dfrac{{\dfrac{n}{4} + 1}}{2}} \right] \\
\Rightarrow n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{{n + 4}}{8}} \right] + \left[ {\dfrac{n}{8}} \right] \\
$
And here, we can observe that if we continue like this, we will have,
$n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{{n + 4}}{8}} \right] + \left[ {\dfrac{{n + 8}}{{16}}} \right] + .......$
Thus, the given expression is equal to $n$.
Hence, option A is the correct option.
Note:
We represent the greatest integer function as $\left[ x \right]$. If a number is such that $\left[ {4.2} \right]$, then the value of the number is 4. Similarly, if we have $\left[ 4 \right]$, then it is equal to 4. Greatest integer function is also known as step-function.
Use the property of greatest integer function, $\left[ x \right] = \left[ {\dfrac{x}{2}} \right] + \left[ {\dfrac{{x + 1}}{2}} \right]$ and expand the value of $\left[ n \right]$, where $n$ is a natural number. Write $n$ as $\left[ {\dfrac{n}{2}} \right] + \left[ {\dfrac{{n + 1}}{2}} \right]$. Then, expand \[\left[ {\dfrac{n}{2}} \right]\] by the same property and continue like this to get an equivalent expression.
Complete step by step solution:
We know that if $\left[ x \right]$ is a greatest integer less than or equal to $x$, then we have $\left[ x \right] = \left[ {\dfrac{x}{2}} \right] + \left[ {\dfrac{{x + 1}}{2}} \right]$
Let us write the same definition for $\left[ n \right]$
$\left[ n \right] = \left[ {\dfrac{n}{2}} \right] + \left[ {\dfrac{{n + 1}}{2}} \right]$
Since, $n \in N$, we can write this as,
$n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{n}{2}} \right]$ eqn. (1)
Similarly, we can write,
$
\left[ {\dfrac{n}{2}} \right] = \left[ {\dfrac{n}{4}} \right] + \left[ {\dfrac{{\dfrac{n}{2} + 1}}{2}} \right] \\
\Rightarrow \left[ {\dfrac{n}{2}} \right] = \left[ {\dfrac{n}{4}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] \\
$
When we substitute the value of \[\left[ {\dfrac{n}{2}} \right]\] in equation (1), we will get,
$n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{n}{4}} \right]$
We will now similarly, expand \[\left[ {\dfrac{n}{4}} \right]\]
$
n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{n}{8}} \right] + \left[ {\dfrac{{\dfrac{n}{4} + 1}}{2}} \right] \\
\Rightarrow n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{{n + 4}}{8}} \right] + \left[ {\dfrac{n}{8}} \right] \\
$
And here, we can observe that if we continue like this, we will have,
$n = \left[ {\dfrac{{n + 1}}{2}} \right] + \left[ {\dfrac{{n + 2}}{4}} \right] + \left[ {\dfrac{{n + 4}}{8}} \right] + \left[ {\dfrac{{n + 8}}{{16}}} \right] + .......$
Thus, the given expression is equal to $n$.
Hence, option A is the correct option.
Note:
We represent the greatest integer function as $\left[ x \right]$. If a number is such that $\left[ {4.2} \right]$, then the value of the number is 4. Similarly, if we have $\left[ 4 \right]$, then it is equal to 4. Greatest integer function is also known as step-function.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

