
If \[f\left( x \right)\] is an odd function of \[x\], then what is the value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]?
A. 0
B. \[\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
C. \[2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
D. \[\int\limits_0^\pi {f\left( {\cos x} \right)} dx\]
Answer
164.1k+ views
Hint: Here, a definite integral is given. First, check whether the given function \[f\left( {\cos x} \right)\] is an even function or an odd function. If the function is odd, then apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)} dx = 0\]. If the function is even, then apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] and then solve the integral by applying the integration property \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]. In the end, apply the trigonometric property \[\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x\] and simplify the integral to get the required answer.
Formula Used:\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:Given:
The definite integral is \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\], where\[f\left( x \right)\] is an odd function of \[x\].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
Now let’s check whether the function \[f\left( {\cos x} \right)\] is an odd function or an even function.
Let consider,
\[g\left( x \right) = f\left( {\cos x} \right)\]
Now calculate the value of \[g\left( { - x} \right)\]
\[g\left( { - x} \right) = f\left( {\cos \left( { - x} \right)} \right)\]
\[ \Rightarrow g\left( { - x} \right) = f\left( {\cos x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = g\left( x \right)\]
Thus, the function \[g\left( x \right) = f\left( {\cos x} \right)\] is an even function.
So, apply the integration rule \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
Again, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos \left( {\dfrac{\pi }{2} - x} \right)} \right)} dx\]
Apply the trigonometric property \[\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x\].
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
Thus, \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\].
Option ‘C’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Formula Used:\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:Given:
The definite integral is \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\], where\[f\left( x \right)\] is an odd function of \[x\].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
Now let’s check whether the function \[f\left( {\cos x} \right)\] is an odd function or an even function.
Let consider,
\[g\left( x \right) = f\left( {\cos x} \right)\]
Now calculate the value of \[g\left( { - x} \right)\]
\[g\left( { - x} \right) = f\left( {\cos \left( { - x} \right)} \right)\]
\[ \Rightarrow g\left( { - x} \right) = f\left( {\cos x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = g\left( x \right)\]
Thus, the function \[g\left( x \right) = f\left( {\cos x} \right)\] is an even function.
So, apply the integration rule \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
Again, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos \left( {\dfrac{\pi }{2} - x} \right)} \right)} dx\]
Apply the trigonometric property \[\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x\].
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
Thus, \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\].
Option ‘C’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
