
If \[f'\left( 3 \right) = 2\], then what is the value of \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\]?
A. 5
B. \[\dfrac{1}{5}\]
C. 2
D. None of these
Answer
233.1k+ views
Hint: Check the given limit. If the limit is in the form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], then simplify the given limit by using the L’Hospital rule. After that, substitute the given values of the functions in the limit and get the required answer.
Formula Used:
L’Hospital rule:
If \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is in the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] when \[x \to c\], then \[\mathop {lim}\limits_{x \to c} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {lim}\limits_{x \to c} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\].
Complete step by step solution:
The given limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\].
Let’s solve the given limit.
Let \[L\] be the value of the limit.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\]
The right-hand side of the limit is the in form of \[\dfrac{0}{0}\].
So, apply the L’Hospital rule.
Differentiate the right-hand side of the limit with respect to \[h\].
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) \times 2h - f'\left( {3 - {h^2}} \right) \times \left( { - 2h} \right)}}{{4h}}} \right]\]
Cancel out the common terms from the numerator and denominator.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)}}{2}} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\mathop {lim}\limits_{h \to 0} \left[ {f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)} \right]\]
Now apply the limit.
\[L = \dfrac{1}{2}\left[ {f'\left( {3 + {0^2}} \right) + f'\left( {3 - {0^2}} \right)} \right]\]
Simplify the above equation.
\[L = \dfrac{1}{2}\left[ {f'\left( 3 \right) + f'\left( 3 \right)} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\left[ {2f'\left( 3 \right)} \right]\]
Substitute the value of \[f'\left( 3 \right)\] in the above equation.
\[L = \dfrac{1}{2}\left[ {2\left( 2 \right)} \right]\]
\[ \Rightarrow \]\[L = 2\]
Thus, the value of the limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right] = 2\].
Hence the correct option is C.
Note: When the numerator and denominator of a limit are in the form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], we use L’Hospital rule. In this process, we take derivatives of the numerator and denominator with respect to the given variable. So that the function is no longer in the indeterminate form.
Formula Used:
L’Hospital rule:
If \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is in the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] when \[x \to c\], then \[\mathop {lim}\limits_{x \to c} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {lim}\limits_{x \to c} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\].
Complete step by step solution:
The given limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\].
Let’s solve the given limit.
Let \[L\] be the value of the limit.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\]
The right-hand side of the limit is the in form of \[\dfrac{0}{0}\].
So, apply the L’Hospital rule.
Differentiate the right-hand side of the limit with respect to \[h\].
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) \times 2h - f'\left( {3 - {h^2}} \right) \times \left( { - 2h} \right)}}{{4h}}} \right]\]
Cancel out the common terms from the numerator and denominator.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)}}{2}} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\mathop {lim}\limits_{h \to 0} \left[ {f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)} \right]\]
Now apply the limit.
\[L = \dfrac{1}{2}\left[ {f'\left( {3 + {0^2}} \right) + f'\left( {3 - {0^2}} \right)} \right]\]
Simplify the above equation.
\[L = \dfrac{1}{2}\left[ {f'\left( 3 \right) + f'\left( 3 \right)} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\left[ {2f'\left( 3 \right)} \right]\]
Substitute the value of \[f'\left( 3 \right)\] in the above equation.
\[L = \dfrac{1}{2}\left[ {2\left( 2 \right)} \right]\]
\[ \Rightarrow \]\[L = 2\]
Thus, the value of the limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right] = 2\].
Hence the correct option is C.
Note: When the numerator and denominator of a limit are in the form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], we use L’Hospital rule. In this process, we take derivatives of the numerator and denominator with respect to the given variable. So that the function is no longer in the indeterminate form.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

