
If \[f'\left( 3 \right) = 2\], then what is the value of \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\]?
A. 5
B. \[\dfrac{1}{5}\]
C. 2
D. None of these
Answer
216.3k+ views
Hint: Check the given limit. If the limit is in the form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], then simplify the given limit by using the L’Hospital rule. After that, substitute the given values of the functions in the limit and get the required answer.
Formula Used:
L’Hospital rule:
If \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is in the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] when \[x \to c\], then \[\mathop {lim}\limits_{x \to c} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {lim}\limits_{x \to c} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\].
Complete step by step solution:
The given limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\].
Let’s solve the given limit.
Let \[L\] be the value of the limit.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\]
The right-hand side of the limit is the in form of \[\dfrac{0}{0}\].
So, apply the L’Hospital rule.
Differentiate the right-hand side of the limit with respect to \[h\].
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) \times 2h - f'\left( {3 - {h^2}} \right) \times \left( { - 2h} \right)}}{{4h}}} \right]\]
Cancel out the common terms from the numerator and denominator.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)}}{2}} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\mathop {lim}\limits_{h \to 0} \left[ {f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)} \right]\]
Now apply the limit.
\[L = \dfrac{1}{2}\left[ {f'\left( {3 + {0^2}} \right) + f'\left( {3 - {0^2}} \right)} \right]\]
Simplify the above equation.
\[L = \dfrac{1}{2}\left[ {f'\left( 3 \right) + f'\left( 3 \right)} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\left[ {2f'\left( 3 \right)} \right]\]
Substitute the value of \[f'\left( 3 \right)\] in the above equation.
\[L = \dfrac{1}{2}\left[ {2\left( 2 \right)} \right]\]
\[ \Rightarrow \]\[L = 2\]
Thus, the value of the limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right] = 2\].
Hence the correct option is C.
Note: When the numerator and denominator of a limit are in the form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], we use L’Hospital rule. In this process, we take derivatives of the numerator and denominator with respect to the given variable. So that the function is no longer in the indeterminate form.
Formula Used:
L’Hospital rule:
If \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is in the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] when \[x \to c\], then \[\mathop {lim}\limits_{x \to c} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {lim}\limits_{x \to c} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\].
Complete step by step solution:
The given limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\].
Let’s solve the given limit.
Let \[L\] be the value of the limit.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\]
The right-hand side of the limit is the in form of \[\dfrac{0}{0}\].
So, apply the L’Hospital rule.
Differentiate the right-hand side of the limit with respect to \[h\].
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) \times 2h - f'\left( {3 - {h^2}} \right) \times \left( { - 2h} \right)}}{{4h}}} \right]\]
Cancel out the common terms from the numerator and denominator.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)}}{2}} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\mathop {lim}\limits_{h \to 0} \left[ {f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)} \right]\]
Now apply the limit.
\[L = \dfrac{1}{2}\left[ {f'\left( {3 + {0^2}} \right) + f'\left( {3 - {0^2}} \right)} \right]\]
Simplify the above equation.
\[L = \dfrac{1}{2}\left[ {f'\left( 3 \right) + f'\left( 3 \right)} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\left[ {2f'\left( 3 \right)} \right]\]
Substitute the value of \[f'\left( 3 \right)\] in the above equation.
\[L = \dfrac{1}{2}\left[ {2\left( 2 \right)} \right]\]
\[ \Rightarrow \]\[L = 2\]
Thus, the value of the limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right] = 2\].
Hence the correct option is C.
Note: When the numerator and denominator of a limit are in the form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], we use L’Hospital rule. In this process, we take derivatives of the numerator and denominator with respect to the given variable. So that the function is no longer in the indeterminate form.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

