
If \[f'\left( 3 \right) = 2\], then what is the value of \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\]?
A. 5
B. \[\dfrac{1}{5}\]
C. 2
D. None of these
Answer
163.8k+ views
Hint: Check the given limit. If the limit is in the form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], then simplify the given limit by using the L’Hospital rule. After that, substitute the given values of the functions in the limit and get the required answer.
Formula Used:
L’Hospital rule:
If \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is in the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] when \[x \to c\], then \[\mathop {lim}\limits_{x \to c} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {lim}\limits_{x \to c} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\].
Complete step by step solution:
The given limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\].
Let’s solve the given limit.
Let \[L\] be the value of the limit.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\]
The right-hand side of the limit is the in form of \[\dfrac{0}{0}\].
So, apply the L’Hospital rule.
Differentiate the right-hand side of the limit with respect to \[h\].
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) \times 2h - f'\left( {3 - {h^2}} \right) \times \left( { - 2h} \right)}}{{4h}}} \right]\]
Cancel out the common terms from the numerator and denominator.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)}}{2}} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\mathop {lim}\limits_{h \to 0} \left[ {f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)} \right]\]
Now apply the limit.
\[L = \dfrac{1}{2}\left[ {f'\left( {3 + {0^2}} \right) + f'\left( {3 - {0^2}} \right)} \right]\]
Simplify the above equation.
\[L = \dfrac{1}{2}\left[ {f'\left( 3 \right) + f'\left( 3 \right)} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\left[ {2f'\left( 3 \right)} \right]\]
Substitute the value of \[f'\left( 3 \right)\] in the above equation.
\[L = \dfrac{1}{2}\left[ {2\left( 2 \right)} \right]\]
\[ \Rightarrow \]\[L = 2\]
Thus, the value of the limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right] = 2\].
Hence the correct option is C.
Note: When the numerator and denominator of a limit are in the form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], we use L’Hospital rule. In this process, we take derivatives of the numerator and denominator with respect to the given variable. So that the function is no longer in the indeterminate form.
Formula Used:
L’Hospital rule:
If \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is in the form \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\] when \[x \to c\], then \[\mathop {lim}\limits_{x \to c} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {lim}\limits_{x \to c} \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\].
Complete step by step solution:
The given limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\].
Let’s solve the given limit.
Let \[L\] be the value of the limit.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right]\]
The right-hand side of the limit is the in form of \[\dfrac{0}{0}\].
So, apply the L’Hospital rule.
Differentiate the right-hand side of the limit with respect to \[h\].
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) \times 2h - f'\left( {3 - {h^2}} \right) \times \left( { - 2h} \right)}}{{4h}}} \right]\]
Cancel out the common terms from the numerator and denominator.
\[L = \mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)}}{2}} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\mathop {lim}\limits_{h \to 0} \left[ {f'\left( {3 + {h^2}} \right) + f'\left( {3 - {h^2}} \right)} \right]\]
Now apply the limit.
\[L = \dfrac{1}{2}\left[ {f'\left( {3 + {0^2}} \right) + f'\left( {3 - {0^2}} \right)} \right]\]
Simplify the above equation.
\[L = \dfrac{1}{2}\left[ {f'\left( 3 \right) + f'\left( 3 \right)} \right]\]
\[ \Rightarrow \]\[L = \dfrac{1}{2}\left[ {2f'\left( 3 \right)} \right]\]
Substitute the value of \[f'\left( 3 \right)\] in the above equation.
\[L = \dfrac{1}{2}\left[ {2\left( 2 \right)} \right]\]
\[ \Rightarrow \]\[L = 2\]
Thus, the value of the limit is \[\mathop {lim}\limits_{h \to 0} \left[ {\dfrac{{f\left( {3 + {h^2}} \right) - f\left( {3 - {h^2}} \right)}}{{2{h^2}}}} \right] = 2\].
Hence the correct option is C.
Note: When the numerator and denominator of a limit are in the form of \[\dfrac{0}{0}\] or \[\dfrac{\infty }{\infty }\], we use L’Hospital rule. In this process, we take derivatives of the numerator and denominator with respect to the given variable. So that the function is no longer in the indeterminate form.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
