
If \[{E_a}\] be the electric field strength of a short dipole at a point on its axial line and \[{E_e}\] that on the equatorial line at the same distance, then
A. \[{E_e} = 2{E_a}\]
B. \[{E_a} = 2{E_e}\]
C. \[{E_e} = {E_a}\]
D. None of the above
Answer
219.9k+ views
Hint:Here first of all we use the formula of the electric field at axial and equatorial points. After that, we compare both of them to get the required result.
The axial line is the line joining the centre of two charges which form an electric dipole. The equatorial line is perpendicular to the axial line which passes through the centre of the electric dipole.
Formula used Electric field at axial point is given as,
\[{E_a} = \dfrac{{2kp}}{{{r^3}}}\]
Electric field at equatorial point is given as,
\[{E_e} = \dfrac{{kp}}{{{r^3}}}\]
Complete step by step solution:
Given electric field strength of a short dipole at a point on its axial line \[{E_a}\] and on the equatorial line \[{E_e}\] be at the same distance. As we know Electric field at axial point is:
\[{E_a} = \dfrac{{2kp}}{{{r^3}}}\]
As we know Electric field at equatorial point is:
\[{E_e} = \dfrac{{kp}}{{{r^3}}} \\ \]
Now to find the relation between the electric field at axial(\[{E_a}\]) point and electric field at equatorial point(\[{E_e}\]), divide both the equation
\[\dfrac{{{E_a}}}{{{E_e}}} = \dfrac{{2kp}}{{{r^3}}} \times \dfrac{{{r^3}}}{{kp}} \\ \]
\[\Rightarrow \dfrac{{{E_a}}}{{{E_e}}} = 2 \\ \]
\[\therefore {E_a} = 2{E_e}\]
Therefore the electric field strength at a point on its axial line is 2 times the electric field strength of that on the equatorial line at the same distance.
Hence option B is the correct answer.
Note:The electric field intensity is inversely proportional to the cube of the distance from the short dipole. The axial line can be defined as the line which is passing through the positive and negative charges. The point lying on that line is known as the axial point. An equatorial line can be defined as the perpendicular line to the line passing through the positive and negative charges. The point that lies on that line is known as the equatorial point.
The axial line is the line joining the centre of two charges which form an electric dipole. The equatorial line is perpendicular to the axial line which passes through the centre of the electric dipole.
Formula used Electric field at axial point is given as,
\[{E_a} = \dfrac{{2kp}}{{{r^3}}}\]
Electric field at equatorial point is given as,
\[{E_e} = \dfrac{{kp}}{{{r^3}}}\]
Complete step by step solution:
Given electric field strength of a short dipole at a point on its axial line \[{E_a}\] and on the equatorial line \[{E_e}\] be at the same distance. As we know Electric field at axial point is:
\[{E_a} = \dfrac{{2kp}}{{{r^3}}}\]
As we know Electric field at equatorial point is:
\[{E_e} = \dfrac{{kp}}{{{r^3}}} \\ \]
Now to find the relation between the electric field at axial(\[{E_a}\]) point and electric field at equatorial point(\[{E_e}\]), divide both the equation
\[\dfrac{{{E_a}}}{{{E_e}}} = \dfrac{{2kp}}{{{r^3}}} \times \dfrac{{{r^3}}}{{kp}} \\ \]
\[\Rightarrow \dfrac{{{E_a}}}{{{E_e}}} = 2 \\ \]
\[\therefore {E_a} = 2{E_e}\]
Therefore the electric field strength at a point on its axial line is 2 times the electric field strength of that on the equatorial line at the same distance.
Hence option B is the correct answer.
Note:The electric field intensity is inversely proportional to the cube of the distance from the short dipole. The axial line can be defined as the line which is passing through the positive and negative charges. The point lying on that line is known as the axial point. An equatorial line can be defined as the perpendicular line to the line passing through the positive and negative charges. The point that lies on that line is known as the equatorial point.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Understanding Entropy Changes in Different Processes

Other Pages
Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding the Wheatstone Bridge: Principles, Formula, and Applications

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Understanding Excess Pressure Inside a Liquid Drop

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Diffraction of Light - Young’s Single Slit Experiment

