
If $\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{A}{{\left( {x - 1} \right)}} + \dfrac{B}{{\left( {x + 1} \right)}} + \dfrac{C}{{{{\left( {x + 1} \right)}^2}}}$ , then what is the value of $A$ ?
A. $\dfrac{{ - 1}}{2}$
B. $\dfrac{{15}}{4}$
C. $\dfrac{7}{4}$
D. $\dfrac{{ - 1}}{4}$
Answer
232.8k+ views
Hint: To begin, simplify the given equation and equalize the denominator on both sides. Then, using the numerators from both sides, create an equation. Then, in the equation, substitute the values for $x$ and calculate the required value of $A$.
Formula Used:
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
Complete step by step solution:
The given equation is $\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{A}{{\left( {x - 1} \right)}} + \dfrac{B}{{\left( {x + 1} \right)}} + \dfrac{C}{{{{\left( {x + 1} \right)}^2}}}$.
Let’s simplify the above equation by equalizing the denominator.
On the right-hand side of the equation, multiply the numerator and denominator of the first term by ${\left( {x + 1} \right)^2}$. Multiply the numerator and denominator of the second term by $\left( {x + 1} \right)\left( {x - 1} \right)$. And multiply the numerator and denominator of the third term by $\left( {x - 1} \right)$.
$\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{{A{{\left( {x + 1} \right)}^2}}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} + \dfrac{{B\left( {x + 1} \right)\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} + \dfrac{{C\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}$
$ \Rightarrow \dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{{A{{\left( {x + 1} \right)}^2} + B\left( {x + 1} \right)\left( {x - 1} \right) + C\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}$
Now equate the numerators of the above equations we get,
$\left( {3x + 4} \right) = A{\left( {x + 1} \right)^2} + B\left( {x + 1} \right)\left( {x - 1} \right) + C\left( {x - 1} \right)$
Now simplify the above equation by using the formula $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$.
$3x + 4 = A{\left( {x + 1} \right)^2} + B\left( {{x^2} - 1} \right) + C\left( {x - 1} \right)$
Substitute $x = 1$ in the above equation.
$3\left( 1 \right) + 4 = A{\left( {1 + 1} \right)^2} + B\left( {{1^2} - 1} \right) + C\left( {1 - 1} \right)$
$ \Rightarrow 7 = A\left( 4 \right) + B\left( 0 \right) + C\left( 0 \right)$
$ \Rightarrow 7 = 4A$
Divide both sides by 4.
$A = \dfrac{7}{4}$
Option ‘C’ is correct
Note: Students often get confused about the concept of the equalization of the denominator.
While equalizing the denominator multiply the numerator and denominator with the common factors of the required denominator.
Formula Used:
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
Complete step by step solution:
The given equation is $\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{A}{{\left( {x - 1} \right)}} + \dfrac{B}{{\left( {x + 1} \right)}} + \dfrac{C}{{{{\left( {x + 1} \right)}^2}}}$.
Let’s simplify the above equation by equalizing the denominator.
On the right-hand side of the equation, multiply the numerator and denominator of the first term by ${\left( {x + 1} \right)^2}$. Multiply the numerator and denominator of the second term by $\left( {x + 1} \right)\left( {x - 1} \right)$. And multiply the numerator and denominator of the third term by $\left( {x - 1} \right)$.
$\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{{A{{\left( {x + 1} \right)}^2}}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} + \dfrac{{B\left( {x + 1} \right)\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} + \dfrac{{C\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}$
$ \Rightarrow \dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{{A{{\left( {x + 1} \right)}^2} + B\left( {x + 1} \right)\left( {x - 1} \right) + C\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}$
Now equate the numerators of the above equations we get,
$\left( {3x + 4} \right) = A{\left( {x + 1} \right)^2} + B\left( {x + 1} \right)\left( {x - 1} \right) + C\left( {x - 1} \right)$
Now simplify the above equation by using the formula $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$.
$3x + 4 = A{\left( {x + 1} \right)^2} + B\left( {{x^2} - 1} \right) + C\left( {x - 1} \right)$
Substitute $x = 1$ in the above equation.
$3\left( 1 \right) + 4 = A{\left( {1 + 1} \right)^2} + B\left( {{1^2} - 1} \right) + C\left( {1 - 1} \right)$
$ \Rightarrow 7 = A\left( 4 \right) + B\left( 0 \right) + C\left( 0 \right)$
$ \Rightarrow 7 = 4A$
Divide both sides by 4.
$A = \dfrac{7}{4}$
Option ‘C’ is correct
Note: Students often get confused about the concept of the equalization of the denominator.
While equalizing the denominator multiply the numerator and denominator with the common factors of the required denominator.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

If 16 identical pencils are distributed among 4 children class 11 maths JEE_Advanced

