
If $\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{A}{{\left( {x - 1} \right)}} + \dfrac{B}{{\left( {x + 1} \right)}} + \dfrac{C}{{{{\left( {x + 1} \right)}^2}}}$ , then what is the value of $A$ ?
A. $\dfrac{{ - 1}}{2}$
B. $\dfrac{{15}}{4}$
C. $\dfrac{7}{4}$
D. $\dfrac{{ - 1}}{4}$
Answer
218.1k+ views
Hint: To begin, simplify the given equation and equalize the denominator on both sides. Then, using the numerators from both sides, create an equation. Then, in the equation, substitute the values for $x$ and calculate the required value of $A$.
Formula Used:
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
Complete step by step solution:
The given equation is $\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{A}{{\left( {x - 1} \right)}} + \dfrac{B}{{\left( {x + 1} \right)}} + \dfrac{C}{{{{\left( {x + 1} \right)}^2}}}$.
Let’s simplify the above equation by equalizing the denominator.
On the right-hand side of the equation, multiply the numerator and denominator of the first term by ${\left( {x + 1} \right)^2}$. Multiply the numerator and denominator of the second term by $\left( {x + 1} \right)\left( {x - 1} \right)$. And multiply the numerator and denominator of the third term by $\left( {x - 1} \right)$.
$\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{{A{{\left( {x + 1} \right)}^2}}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} + \dfrac{{B\left( {x + 1} \right)\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} + \dfrac{{C\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}$
$ \Rightarrow \dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{{A{{\left( {x + 1} \right)}^2} + B\left( {x + 1} \right)\left( {x - 1} \right) + C\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}$
Now equate the numerators of the above equations we get,
$\left( {3x + 4} \right) = A{\left( {x + 1} \right)^2} + B\left( {x + 1} \right)\left( {x - 1} \right) + C\left( {x - 1} \right)$
Now simplify the above equation by using the formula $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$.
$3x + 4 = A{\left( {x + 1} \right)^2} + B\left( {{x^2} - 1} \right) + C\left( {x - 1} \right)$
Substitute $x = 1$ in the above equation.
$3\left( 1 \right) + 4 = A{\left( {1 + 1} \right)^2} + B\left( {{1^2} - 1} \right) + C\left( {1 - 1} \right)$
$ \Rightarrow 7 = A\left( 4 \right) + B\left( 0 \right) + C\left( 0 \right)$
$ \Rightarrow 7 = 4A$
Divide both sides by 4.
$A = \dfrac{7}{4}$
Option ‘C’ is correct
Note: Students often get confused about the concept of the equalization of the denominator.
While equalizing the denominator multiply the numerator and denominator with the common factors of the required denominator.
Formula Used:
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
Complete step by step solution:
The given equation is $\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{A}{{\left( {x - 1} \right)}} + \dfrac{B}{{\left( {x + 1} \right)}} + \dfrac{C}{{{{\left( {x + 1} \right)}^2}}}$.
Let’s simplify the above equation by equalizing the denominator.
On the right-hand side of the equation, multiply the numerator and denominator of the first term by ${\left( {x + 1} \right)^2}$. Multiply the numerator and denominator of the second term by $\left( {x + 1} \right)\left( {x - 1} \right)$. And multiply the numerator and denominator of the third term by $\left( {x - 1} \right)$.
$\dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{{A{{\left( {x + 1} \right)}^2}}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}} + \dfrac{{B\left( {x + 1} \right)\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} + \dfrac{{C\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}}$
$ \Rightarrow \dfrac{{\left( {3x + 4} \right)}}{{{{\left( {x + 1} \right)}^2}\left( {x - 1} \right)}} = \dfrac{{A{{\left( {x + 1} \right)}^2} + B\left( {x + 1} \right)\left( {x - 1} \right) + C\left( {x - 1} \right)}}{{\left( {x - 1} \right){{\left( {x + 1} \right)}^2}}}$
Now equate the numerators of the above equations we get,
$\left( {3x + 4} \right) = A{\left( {x + 1} \right)^2} + B\left( {x + 1} \right)\left( {x - 1} \right) + C\left( {x - 1} \right)$
Now simplify the above equation by using the formula $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$.
$3x + 4 = A{\left( {x + 1} \right)^2} + B\left( {{x^2} - 1} \right) + C\left( {x - 1} \right)$
Substitute $x = 1$ in the above equation.
$3\left( 1 \right) + 4 = A{\left( {1 + 1} \right)^2} + B\left( {{1^2} - 1} \right) + C\left( {1 - 1} \right)$
$ \Rightarrow 7 = A\left( 4 \right) + B\left( 0 \right) + C\left( 0 \right)$
$ \Rightarrow 7 = 4A$
Divide both sides by 4.
$A = \dfrac{7}{4}$
Option ‘C’ is correct
Note: Students often get confused about the concept of the equalization of the denominator.
While equalizing the denominator multiply the numerator and denominator with the common factors of the required denominator.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

