
If \[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] , then find the value of \[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty \] .
A. \[\dfrac{{{\pi ^4}}}{{96}}\]
B. \[\dfrac{{{\pi ^4}}}{{45}}\]
C. \[\dfrac{{89{\pi ^4}}}{{90}}\]
D. None of these
Answer
218.4k+ views
Hint:First we will separate the terms such that the denominator is 4 rise of odd numbers and even numbers. Then simplify the 4 rises of even numbers and calculate the value of the given expression.
Complete step by step solution:
Given equation
\[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] ……………(1)
Simplifying the given equation by separating even and odd numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{6^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{{\left( {2 \times 2} \right)}^4}}} + \dfrac{1}{{{{\left( {3 \times 2} \right)}^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Taking common \[\dfrac{1}{{{2^4}}}\] from even numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]……………..(2)
Substituting the value of the second term of equation (2) from equation (1), we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{{{\pi ^4}}}{{90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Simplifying the expression and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{{{\pi ^4}}}{{{2^4} \times 90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}} - \dfrac{{{\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{2^4}{\pi ^4} - {\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {{2^4} - 1} \right){\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {16 - 1} \right){\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{15 \times {\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{16 \times 6}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{96}}\]
Hence, the correct option is option A.
Additional information:
Definition of infinite series: The total of infinitely many numbers connected in a specific way and listed in a specific order is known as an infinite series. In mathematics as well as in fields like physics, chemistry, and biology, infinite series is helpful.
Note:To solve infinite series you need to use the substitution method. In this question, you need to write the equation as a sum of a fraction whose denominator is 4 rises of odd numbers and whose denominator is 4 rises. Then take out the common factor from the sum whose denominator is 4 rises of even numbers and substitute the value of the given expression. After simplifying we can get the required value.
Complete step by step solution:
Given equation
\[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] ……………(1)
Simplifying the given equation by separating even and odd numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{6^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{{\left( {2 \times 2} \right)}^4}}} + \dfrac{1}{{{{\left( {3 \times 2} \right)}^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Taking common \[\dfrac{1}{{{2^4}}}\] from even numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]……………..(2)
Substituting the value of the second term of equation (2) from equation (1), we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{{{\pi ^4}}}{{90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Simplifying the expression and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{{{\pi ^4}}}{{{2^4} \times 90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}} - \dfrac{{{\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{2^4}{\pi ^4} - {\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {{2^4} - 1} \right){\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {16 - 1} \right){\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{15 \times {\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{16 \times 6}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{96}}\]
Hence, the correct option is option A.
Additional information:
Definition of infinite series: The total of infinitely many numbers connected in a specific way and listed in a specific order is known as an infinite series. In mathematics as well as in fields like physics, chemistry, and biology, infinite series is helpful.
Note:To solve infinite series you need to use the substitution method. In this question, you need to write the equation as a sum of a fraction whose denominator is 4 rises of odd numbers and whose denominator is 4 rises. Then take out the common factor from the sum whose denominator is 4 rises of even numbers and substitute the value of the given expression. After simplifying we can get the required value.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

