
If \[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] , then find the value of \[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty \] .
A. \[\dfrac{{{\pi ^4}}}{{96}}\]
B. \[\dfrac{{{\pi ^4}}}{{45}}\]
C. \[\dfrac{{89{\pi ^4}}}{{90}}\]
D. None of these
Answer
161.4k+ views
Hint:First we will separate the terms such that the denominator is 4 rise of odd numbers and even numbers. Then simplify the 4 rises of even numbers and calculate the value of the given expression.
Complete step by step solution:
Given equation
\[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] ……………(1)
Simplifying the given equation by separating even and odd numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{6^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{{\left( {2 \times 2} \right)}^4}}} + \dfrac{1}{{{{\left( {3 \times 2} \right)}^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Taking common \[\dfrac{1}{{{2^4}}}\] from even numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]……………..(2)
Substituting the value of the second term of equation (2) from equation (1), we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{{{\pi ^4}}}{{90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Simplifying the expression and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{{{\pi ^4}}}{{{2^4} \times 90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}} - \dfrac{{{\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{2^4}{\pi ^4} - {\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {{2^4} - 1} \right){\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {16 - 1} \right){\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{15 \times {\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{16 \times 6}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{96}}\]
Hence, the correct option is option A.
Additional information:
Definition of infinite series: The total of infinitely many numbers connected in a specific way and listed in a specific order is known as an infinite series. In mathematics as well as in fields like physics, chemistry, and biology, infinite series is helpful.
Note:To solve infinite series you need to use the substitution method. In this question, you need to write the equation as a sum of a fraction whose denominator is 4 rises of odd numbers and whose denominator is 4 rises. Then take out the common factor from the sum whose denominator is 4 rises of even numbers and substitute the value of the given expression. After simplifying we can get the required value.
Complete step by step solution:
Given equation
\[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] ……………(1)
Simplifying the given equation by separating even and odd numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{6^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{{\left( {2 \times 2} \right)}^4}}} + \dfrac{1}{{{{\left( {3 \times 2} \right)}^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Taking common \[\dfrac{1}{{{2^4}}}\] from even numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]……………..(2)
Substituting the value of the second term of equation (2) from equation (1), we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{{{\pi ^4}}}{{90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Simplifying the expression and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{{{\pi ^4}}}{{{2^4} \times 90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}} - \dfrac{{{\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{2^4}{\pi ^4} - {\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {{2^4} - 1} \right){\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {16 - 1} \right){\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{15 \times {\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{16 \times 6}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{96}}\]
Hence, the correct option is option A.
Additional information:
Definition of infinite series: The total of infinitely many numbers connected in a specific way and listed in a specific order is known as an infinite series. In mathematics as well as in fields like physics, chemistry, and biology, infinite series is helpful.
Note:To solve infinite series you need to use the substitution method. In this question, you need to write the equation as a sum of a fraction whose denominator is 4 rises of odd numbers and whose denominator is 4 rises. Then take out the common factor from the sum whose denominator is 4 rises of even numbers and substitute the value of the given expression. After simplifying we can get the required value.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
