
If \[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] , then find the value of \[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty \] .
A. \[\dfrac{{{\pi ^4}}}{{96}}\]
B. \[\dfrac{{{\pi ^4}}}{{45}}\]
C. \[\dfrac{{89{\pi ^4}}}{{90}}\]
D. None of these
Answer
232.8k+ views
Hint:First we will separate the terms such that the denominator is 4 rise of odd numbers and even numbers. Then simplify the 4 rises of even numbers and calculate the value of the given expression.
Complete step by step solution:
Given equation
\[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] ……………(1)
Simplifying the given equation by separating even and odd numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{6^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{{\left( {2 \times 2} \right)}^4}}} + \dfrac{1}{{{{\left( {3 \times 2} \right)}^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Taking common \[\dfrac{1}{{{2^4}}}\] from even numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]……………..(2)
Substituting the value of the second term of equation (2) from equation (1), we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{{{\pi ^4}}}{{90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Simplifying the expression and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{{{\pi ^4}}}{{{2^4} \times 90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}} - \dfrac{{{\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{2^4}{\pi ^4} - {\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {{2^4} - 1} \right){\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {16 - 1} \right){\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{15 \times {\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{16 \times 6}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{96}}\]
Hence, the correct option is option A.
Additional information:
Definition of infinite series: The total of infinitely many numbers connected in a specific way and listed in a specific order is known as an infinite series. In mathematics as well as in fields like physics, chemistry, and biology, infinite series is helpful.
Note:To solve infinite series you need to use the substitution method. In this question, you need to write the equation as a sum of a fraction whose denominator is 4 rises of odd numbers and whose denominator is 4 rises. Then take out the common factor from the sum whose denominator is 4 rises of even numbers and substitute the value of the given expression. After simplifying we can get the required value.
Complete step by step solution:
Given equation
\[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] ……………(1)
Simplifying the given equation by separating even and odd numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{6^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{{\left( {2 \times 2} \right)}^4}}} + \dfrac{1}{{{{\left( {3 \times 2} \right)}^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Taking common \[\dfrac{1}{{{2^4}}}\] from even numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]……………..(2)
Substituting the value of the second term of equation (2) from equation (1), we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{{{\pi ^4}}}{{90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Simplifying the expression and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{{{\pi ^4}}}{{{2^4} \times 90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}} - \dfrac{{{\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{2^4}{\pi ^4} - {\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {{2^4} - 1} \right){\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {16 - 1} \right){\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{15 \times {\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{16 \times 6}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{96}}\]
Hence, the correct option is option A.
Additional information:
Definition of infinite series: The total of infinitely many numbers connected in a specific way and listed in a specific order is known as an infinite series. In mathematics as well as in fields like physics, chemistry, and biology, infinite series is helpful.
Note:To solve infinite series you need to use the substitution method. In this question, you need to write the equation as a sum of a fraction whose denominator is 4 rises of odd numbers and whose denominator is 4 rises. Then take out the common factor from the sum whose denominator is 4 rises of even numbers and substitute the value of the given expression. After simplifying we can get the required value.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

