
If $\Delta ={{a}^{2}}-{{(b-c)}^{2}}$, where $\Delta$ is the area of the triangle $ABC$, then $\tan A$ is equal to
A. $\dfrac{15}{16}$
B. $\dfrac{8}{15}$
C. $\dfrac{8}{17}$
D. $\dfrac{1}{2}$
Answer
233.1k+ views
Hint: To solve this question, we will simplify the given equation and derive an equation in terms of the semi perimeter of the triangle $s$ and consider it as the first equation. We will then use the half angle formula of tan and simplify it using Heron’s formula and deduce an equation for $\tan \dfrac{A}{2}$ and consider it as the second equation. Then we will compare both the equations and derive the numerical value of $\tan \dfrac{A}{2}$. We will then substitute this value of $\tan \dfrac{A}{2}$ in the formula of $\tan A$ and find its value.
Formula Used: ${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$,
Semi perimeter of the triangle is:
$\begin{align}
& s=\dfrac{a+b+c}{2} \\
& 2s=a+b+c \\
\end{align}$
The formulas of tan are:
$\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$
$\tan A=\dfrac{2\tan \dfrac{A}{2}}{1-{{\tan }^{2}}\dfrac{A}{2}}$
Heron’s Formula:
$\Delta =\sqrt{s(s-a)(s-b)(s-c)}$
Complete step by step solution: We are given area of triangle$ABC$ , $\Delta ={{a}^{2}}-{{(b-c)}^{2}}$ where $\Delta $is the area of the triangle and we have to calculate the value of $\tan A$.
We will take the given area of the triangle and simplify it using formula of ${{a}^{2}}-{{b}^{2}}$.
$\begin{align}
& \Delta ={{a}^{2}}-{{(b-c)}^{2}} \\
& =(a-(b-c)(a+(b-c)) \\
& =(a-b+c)(a+b-c)
\end{align}$
Now we can write the equation as,
$\Delta =(a+b+c-2b)(a+b+c-2c)$
We will now substitute the formula of the semi perimeter of the triangle $2s=a+b+c$.
$\begin{align}
& \Delta =(2s-2b)(2s-2c) \\
& \Delta =4(s-b)(s-c) \\
& \dfrac{1}{4}=\dfrac{(s-b)(s-c)}{\Delta }....(i)
\end{align}$
Now we will use the formula of $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$ and write it in the form of equation we derived from the area of the triangle that was given.
$\tan \dfrac{A}{2}\sqrt{s(s-a)}=\sqrt{(s-b)(s-c)}$
We will now multiply this equation on both sides by $\sqrt{(s-b)(s-c)}$.
$\begin{align}
& \tan \dfrac{A}{2}\sqrt{s(s-a)}\times \sqrt{(s-b)(s-c)}=\sqrt{(s-b)(s-c)}\times \sqrt{(s-b)(s-c)} \\
& \tan \dfrac{A}{2}\sqrt{s(s-a)(s-b)(s-c)}=(s-b)(s-c)
\end{align}$
We know that $\sqrt{s(s-a)(s-b)(s-c)}$ is the Heron’s formula to calculate the area of the triangle hence,
\[\begin{align}
& \tan \dfrac{A}{2}.\Delta =(s-b)(s-c) \\
& \tan \dfrac{A}{2}=\dfrac{(s-b)(s-c)}{\Delta }.....(ii) \\
\end{align}\]
Comparing both the equation (i) and (ii) we will get,
$\tan \dfrac{A}{2}=\dfrac{1}{4}$
We will now use the formula $\tan A=\dfrac{2\tan \dfrac{A}{2}}{1-{{\tan }^{2}}\dfrac{A}{2}}$ and substitute the value we derived$\tan \dfrac{A}{2}=\dfrac{1}{4}$.
$\begin{align}
& \tan A=\dfrac{2\times \dfrac{1}{4}}{1-{{\left( \dfrac{1}{4} \right)}^{2}}} \\
& =\dfrac{\dfrac{1}{2}}{\dfrac{15}{16}} \\
& =\dfrac{8}{15}
\end{align}$
The value of $\tan A$ is $\tan A=\dfrac{8}{15}$ when the area of the triangle $ABC$ is $\Delta ={{a}^{2}}-{{(b-c)}^{2}}$. Hence the correct option is (B).
Note: We should notice that a lot of formulas are used here from the semi perimeter of the triangle, Heron’s Formula, Expansion formula and all the other trigonometric formulas so we must remember all these to solve these kinds of questions.
Formula Used: ${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$,
Semi perimeter of the triangle is:
$\begin{align}
& s=\dfrac{a+b+c}{2} \\
& 2s=a+b+c \\
\end{align}$
The formulas of tan are:
$\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$
$\tan A=\dfrac{2\tan \dfrac{A}{2}}{1-{{\tan }^{2}}\dfrac{A}{2}}$
Heron’s Formula:
$\Delta =\sqrt{s(s-a)(s-b)(s-c)}$
Complete step by step solution: We are given area of triangle$ABC$ , $\Delta ={{a}^{2}}-{{(b-c)}^{2}}$ where $\Delta $is the area of the triangle and we have to calculate the value of $\tan A$.
We will take the given area of the triangle and simplify it using formula of ${{a}^{2}}-{{b}^{2}}$.
$\begin{align}
& \Delta ={{a}^{2}}-{{(b-c)}^{2}} \\
& =(a-(b-c)(a+(b-c)) \\
& =(a-b+c)(a+b-c)
\end{align}$
Now we can write the equation as,
$\Delta =(a+b+c-2b)(a+b+c-2c)$
We will now substitute the formula of the semi perimeter of the triangle $2s=a+b+c$.
$\begin{align}
& \Delta =(2s-2b)(2s-2c) \\
& \Delta =4(s-b)(s-c) \\
& \dfrac{1}{4}=\dfrac{(s-b)(s-c)}{\Delta }....(i)
\end{align}$
Now we will use the formula of $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$ and write it in the form of equation we derived from the area of the triangle that was given.
$\tan \dfrac{A}{2}\sqrt{s(s-a)}=\sqrt{(s-b)(s-c)}$
We will now multiply this equation on both sides by $\sqrt{(s-b)(s-c)}$.
$\begin{align}
& \tan \dfrac{A}{2}\sqrt{s(s-a)}\times \sqrt{(s-b)(s-c)}=\sqrt{(s-b)(s-c)}\times \sqrt{(s-b)(s-c)} \\
& \tan \dfrac{A}{2}\sqrt{s(s-a)(s-b)(s-c)}=(s-b)(s-c)
\end{align}$
We know that $\sqrt{s(s-a)(s-b)(s-c)}$ is the Heron’s formula to calculate the area of the triangle hence,
\[\begin{align}
& \tan \dfrac{A}{2}.\Delta =(s-b)(s-c) \\
& \tan \dfrac{A}{2}=\dfrac{(s-b)(s-c)}{\Delta }.....(ii) \\
\end{align}\]
Comparing both the equation (i) and (ii) we will get,
$\tan \dfrac{A}{2}=\dfrac{1}{4}$
We will now use the formula $\tan A=\dfrac{2\tan \dfrac{A}{2}}{1-{{\tan }^{2}}\dfrac{A}{2}}$ and substitute the value we derived$\tan \dfrac{A}{2}=\dfrac{1}{4}$.
$\begin{align}
& \tan A=\dfrac{2\times \dfrac{1}{4}}{1-{{\left( \dfrac{1}{4} \right)}^{2}}} \\
& =\dfrac{\dfrac{1}{2}}{\dfrac{15}{16}} \\
& =\dfrac{8}{15}
\end{align}$
The value of $\tan A$ is $\tan A=\dfrac{8}{15}$ when the area of the triangle $ABC$ is $\Delta ={{a}^{2}}-{{(b-c)}^{2}}$. Hence the correct option is (B).
Note: We should notice that a lot of formulas are used here from the semi perimeter of the triangle, Heron’s Formula, Expansion formula and all the other trigonometric formulas so we must remember all these to solve these kinds of questions.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

