
If \[\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5},\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\] and \[\alpha ,\beta \] lie between \[0\] and \[\dfrac{\pi }{4}\] then find the value of \[\tan 2\alpha \].
A. \[\dfrac{{16}}{{63}}\]
B. \[\dfrac{{56}}{{33}}\]
C. \[\dfrac{{28}}{{33}}\]
D. None of these
Answer
217.2k+ views
Hint: In this question, for determining the value of \[\tan 2\alpha \], we need to express \[\tan 2\alpha \] in terms of \[\tan \left( {\alpha + \beta + \alpha - \beta } \right)\]. For this, we have to find the values of \[\cos \left( {\alpha - \beta } \right)\]and \[\sin \left( {\alpha - \beta } \right)\] from the given data.
Complete step by step answer:
We know that \[\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}\].
But \[\sin x = \sqrt {1 - {{\cos }^2}x} \].
Thus, we get
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\cos }^2}\left( {\alpha + \beta } \right)} \]
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \]
\[\sin \left( {\alpha + \beta } \right) = \dfrac{3}{5}\]
Also, we know that \[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\]
But \[\cos x = \sqrt {1 - {{\sin }^2}x} \]
So, we get
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\sin }^2}\left( {\alpha - \beta } \right)} \]
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\left( {5/13} \right)}^2}} \]
\[\cos \left( {\alpha - \beta } \right) = \dfrac{{12}}{{13}}\]
Therefore, we can say that \[\tan 2\alpha = \tan \left( {\alpha + \beta + \alpha - \beta } \right)\]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a \times \tan b}}\]
So, \[\tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right) \times \tan \left( {\alpha - \beta } \right)}}\]
Now, let us express in terms of sin and cos
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} + \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}{{1 - \dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} \times \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}\]
Thus, we can have
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{3/5}}{{4/5}} + \dfrac{{5/13}}{{12/13}}}}{{1 - \dfrac{{3/5}}{{4/5}} \times \dfrac{{5/13}}{{12/13}}}}\]
By simplifying, we get
\[\tan \left( {2\alpha } \right) = \dfrac{{56}}{{33}}\]
Hence, the value of \[\tan \left( {2\alpha } \right)\] is \[\dfrac{{56}}{{33}}\].
Therefore, the option (B) is correct.
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Converting all the trigonometric ratios into sine and cosine is necessary for solving trigonometric problems as this makes them simpler.
Complete step by step answer:
We know that \[\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}\].
But \[\sin x = \sqrt {1 - {{\cos }^2}x} \].
Thus, we get
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\cos }^2}\left( {\alpha + \beta } \right)} \]
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \]
\[\sin \left( {\alpha + \beta } \right) = \dfrac{3}{5}\]
Also, we know that \[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\]
But \[\cos x = \sqrt {1 - {{\sin }^2}x} \]
So, we get
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\sin }^2}\left( {\alpha - \beta } \right)} \]
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\left( {5/13} \right)}^2}} \]
\[\cos \left( {\alpha - \beta } \right) = \dfrac{{12}}{{13}}\]
Therefore, we can say that \[\tan 2\alpha = \tan \left( {\alpha + \beta + \alpha - \beta } \right)\]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a \times \tan b}}\]
So, \[\tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right) \times \tan \left( {\alpha - \beta } \right)}}\]
Now, let us express in terms of sin and cos
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} + \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}{{1 - \dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} \times \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}\]
Thus, we can have
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{3/5}}{{4/5}} + \dfrac{{5/13}}{{12/13}}}}{{1 - \dfrac{{3/5}}{{4/5}} \times \dfrac{{5/13}}{{12/13}}}}\]
By simplifying, we get
\[\tan \left( {2\alpha } \right) = \dfrac{{56}}{{33}}\]
Hence, the value of \[\tan \left( {2\alpha } \right)\] is \[\dfrac{{56}}{{33}}\].
Therefore, the option (B) is correct.
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Converting all the trigonometric ratios into sine and cosine is necessary for solving trigonometric problems as this makes them simpler.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

