
If \[\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5},\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\] and \[\alpha ,\beta \] lie between \[0\] and \[\dfrac{\pi }{4}\] then find the value of \[\tan 2\alpha \].
A. \[\dfrac{{16}}{{63}}\]
B. \[\dfrac{{56}}{{33}}\]
C. \[\dfrac{{28}}{{33}}\]
D. None of these
Answer
163.2k+ views
Hint: In this question, for determining the value of \[\tan 2\alpha \], we need to express \[\tan 2\alpha \] in terms of \[\tan \left( {\alpha + \beta + \alpha - \beta } \right)\]. For this, we have to find the values of \[\cos \left( {\alpha - \beta } \right)\]and \[\sin \left( {\alpha - \beta } \right)\] from the given data.
Complete step by step answer:
We know that \[\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}\].
But \[\sin x = \sqrt {1 - {{\cos }^2}x} \].
Thus, we get
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\cos }^2}\left( {\alpha + \beta } \right)} \]
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \]
\[\sin \left( {\alpha + \beta } \right) = \dfrac{3}{5}\]
Also, we know that \[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\]
But \[\cos x = \sqrt {1 - {{\sin }^2}x} \]
So, we get
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\sin }^2}\left( {\alpha - \beta } \right)} \]
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\left( {5/13} \right)}^2}} \]
\[\cos \left( {\alpha - \beta } \right) = \dfrac{{12}}{{13}}\]
Therefore, we can say that \[\tan 2\alpha = \tan \left( {\alpha + \beta + \alpha - \beta } \right)\]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a \times \tan b}}\]
So, \[\tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right) \times \tan \left( {\alpha - \beta } \right)}}\]
Now, let us express in terms of sin and cos
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} + \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}{{1 - \dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} \times \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}\]
Thus, we can have
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{3/5}}{{4/5}} + \dfrac{{5/13}}{{12/13}}}}{{1 - \dfrac{{3/5}}{{4/5}} \times \dfrac{{5/13}}{{12/13}}}}\]
By simplifying, we get
\[\tan \left( {2\alpha } \right) = \dfrac{{56}}{{33}}\]
Hence, the value of \[\tan \left( {2\alpha } \right)\] is \[\dfrac{{56}}{{33}}\].
Therefore, the option (B) is correct.
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Converting all the trigonometric ratios into sine and cosine is necessary for solving trigonometric problems as this makes them simpler.
Complete step by step answer:
We know that \[\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}\].
But \[\sin x = \sqrt {1 - {{\cos }^2}x} \].
Thus, we get
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\cos }^2}\left( {\alpha + \beta } \right)} \]
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \]
\[\sin \left( {\alpha + \beta } \right) = \dfrac{3}{5}\]
Also, we know that \[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\]
But \[\cos x = \sqrt {1 - {{\sin }^2}x} \]
So, we get
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\sin }^2}\left( {\alpha - \beta } \right)} \]
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\left( {5/13} \right)}^2}} \]
\[\cos \left( {\alpha - \beta } \right) = \dfrac{{12}}{{13}}\]
Therefore, we can say that \[\tan 2\alpha = \tan \left( {\alpha + \beta + \alpha - \beta } \right)\]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a \times \tan b}}\]
So, \[\tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right) \times \tan \left( {\alpha - \beta } \right)}}\]
Now, let us express in terms of sin and cos
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} + \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}{{1 - \dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} \times \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}\]
Thus, we can have
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{3/5}}{{4/5}} + \dfrac{{5/13}}{{12/13}}}}{{1 - \dfrac{{3/5}}{{4/5}} \times \dfrac{{5/13}}{{12/13}}}}\]
By simplifying, we get
\[\tan \left( {2\alpha } \right) = \dfrac{{56}}{{33}}\]
Hence, the value of \[\tan \left( {2\alpha } \right)\] is \[\dfrac{{56}}{{33}}\].
Therefore, the option (B) is correct.
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Converting all the trigonometric ratios into sine and cosine is necessary for solving trigonometric problems as this makes them simpler.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
