
If $\cos \left( {A + B} \right) = \alpha \cos A\cos B + \beta \sin A\sin B,$ then $\left( {\alpha ,\beta } \right) =$
A. $\left( { - 1, - 1} \right)$
B. $\left( { - 1,1} \right)$
C. $\left( {1, - 1} \right)$
D. $\left( {1,1} \right)$
Answer
218.7k+ views
Hint: In order to solve this type of question, first we will consider the given equation. Then, we will consider a trigonometric identity ($\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ ). Next, we will compare both the equations to find the value of $\alpha$ and $\beta$. Hence, we will get the required correct answer by finding the values of $\alpha$ and $\beta$.
Formula used: The trigonometric equation: $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
Complete step-by-step solution:
We are given that,
$\cos \left( {A + B} \right) = \alpha \cos A\cos B + \beta \sin A\sin B$ …………………equation$\left( 1 \right)$
We know that the trigonometric equation for $\cos (A+B)$ is given as
$\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ …………………equation$\left( 2 \right)$
On comparing equations $\left( 1 \right)$ and $\left( 2 \right)$ we get,
$\alpha = 1,\;\beta = - 1$
Hence, $(\alpha ,\beta )=(1,-1)$
Hence, the correct option is C.
Note: The trigonometric equations should be remembered. Choose the suitable trigonometric identities and be very sure while simplifying them. A trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. A trigonometric equation can be solved in more than one way. This type of question requires the correct application of trigonometric rules to get the correct answer. Sometimes students get confused with the formula $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\cos \left( {A + B} \right) = \cos A\cos B + \sin A\sin B$.
Formula used: The trigonometric equation: $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
Complete step-by-step solution:
We are given that,
$\cos \left( {A + B} \right) = \alpha \cos A\cos B + \beta \sin A\sin B$ …………………equation$\left( 1 \right)$
We know that the trigonometric equation for $\cos (A+B)$ is given as
$\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ …………………equation$\left( 2 \right)$
On comparing equations $\left( 1 \right)$ and $\left( 2 \right)$ we get,
$\alpha = 1,\;\beta = - 1$
Hence, $(\alpha ,\beta )=(1,-1)$
Hence, the correct option is C.
Note: The trigonometric equations should be remembered. Choose the suitable trigonometric identities and be very sure while simplifying them. A trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. A trigonometric equation can be solved in more than one way. This type of question requires the correct application of trigonometric rules to get the correct answer. Sometimes students get confused with the formula $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$ and $\cos \left( {A + B} \right) = \cos A\cos B + \sin A\sin B$.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

