
If $C{{H}_{3}}COOH$ $({{K}_{a}}={{10}^{-5}})$ reacts with $NaOH$ at 298 K, then find out the value of the maximum rate constant of the reverse reaction at 298K at the end point of the reaction. Given that the rate constant of the forward reaction is ${{10}^{-11}}\,mo{{l}^{-1}}L{{\sec }^{-1}}$at 298K. also, calculate Arrhenius parameter for backward reaction, if $\Delta {{H}_{298}}=44kcal\,\text{and}\,{{E}_{a(f)}}=94kcal$ :
(A) ${{K}_{b}}={{10}^{-20}},{{A}_{b}}=2.71\times {{10}^{16}}$
(B) ${{K}_{b}}={{10}^{-19}},{{A}_{b}}=5.4\times {{10}^{16}}$
(C) ${{K}_{b}}={{10}^{-10}},{{A}_{b}}=5.4\times {{10}^{14}}$
(D) None of these
Answer
151.5k+ views
Hint: The reaction being a weak acid and strong base reaction, from the hydrolysis constant of the salt hydrolysis and the dissociation constant of the weak acid, the relation to the rate constant obtained and thus, the Arrhenius parameter is calculated.
Complete step by step solution:
It is given that a reaction between a weak acid, acetic acid $(C{{H}_{3}}COOH)$ and strong base, sodium hydroxide $(NaOH)$ takes place. It is a neutralization reaction, leading to the formation of sodium acetate salt and water, with the equilibrium constant ${{K}_{c}}$ , as follows:
$C{{H}_{3}}COOH+NaOH\rightleftharpoons C{{H}_{3}}COONa+{{H}_{2}}O$
Here, the forward rate constant is ${{k}_{1}}$ and backward rate constant is ${{k}_{2}}$. So, the ${{K}_{c}}$ is given by:
${{K}_{c}}=\dfrac{{{k}_{1}}}{{{k}_{2}}}$ ------ (1)
The reverse of the above reaction is known as the hydrolysis reaction of the salt, which completely dissociates into its ions in the solution. The solution is basic, due to the presence of hydroxide ions, as the acetate (conjugate base) abstracts a proton from the water molecule, with a hydrolysis constant ${{K}_{h}}$ , the reaction is as follows:
$C{{H}_{3}}COONa\to C{{H}_{3}}CO{{O}^{-}}+N{{a}^{+}}\text{(spectator}\,cat\text{ion)}$
Hydrolysis: $C{{H}_{3}}CO{{O}^{-}}+{{H}_{2}}O\rightleftarrows C{{H}_{3}}COOH+O{{H}^{-}}$
The hydrolysis constant of the reaction is,
\[{{K}_{h}}=\,\,\dfrac{\left[ C{{H}_{3}}COOH \right]\left[ O{{H}^{-}} \right]}{\left[ C{{H}_{3}}CO{{O}^{-}} \right]\left[ {{H}_{2}}O \right]}\,\,\,\] ------- (2)
Then, as the equilibrium constant and the hydrolysis constant are inversely proportional. It is given as:
\[{{K}_{c}}={{\left( {{K}_{h}} \right)}^{-1}}=\,\,\dfrac{\left[ C{{H}_{3}}CO{{O}^{-}} \right]\left[ {{H}_{2}}O \right]}{\left[ C{{H}_{3}}COOH \right]\left[ O{{H}^{-}} \right]}\,\,\] ------- (3)
It is also given that, the acetic acid with a ${{K}_{a}}$ , being a weak acid, it dissociates partially. We get the dissociation constant as,
\[{{K}_{a}}=\,\,\dfrac{\left[ C{{H}_{3}}CO{{O}^{-}} \right]\left[ {{H}^{+}} \right]}{\left[ C{{H}_{3}}COOH \right]}\,\,={{10}^{-5}}\]
We can get, $\dfrac{\left[ C{{H}_{3}}CO{{O}^{-}} \right]}{\left[ C{{H}_{3}}COOH \right]}=\dfrac{{{10}^{-5}}}{\left[ {{H}^{+}} \right]}$ ------- (4)
Also, as we know, the ionic product constant of water is:
${{K}_{W}}=\dfrac{\left[ {{H}^{+}} \right]\left[ O{{H}^{-}} \right]}{\left[ {{H}_{2}}O \right]}={{10}^{-14}}$
We can get, $\dfrac{\left[ {{H}^{+}} \right]}{\left[ {{10}^{-14}} \right]}=\dfrac{\left[ {{H}_{2}}O \right]}{\left[ O{{H}^{-}} \right]}$ -------- (5)
Now, we substitute the values of equation (4) and (5) in equation (3), we get,
\[{{K}_{c}}={{\left( {{K}_{h}} \right)}^{-1}}=\,\dfrac{{{10}^{-5}}}{\left[ {{H}^{+}} \right]}\,\times \dfrac{\left[ {{H}^{+}} \right]}{{{10}^{-14}}}\,\,\]
\[{{K}_{c}}=\dfrac{{{k}_{1}}}{{{k}_{2}}}=\,\dfrac{{{10}^{-5}}}{\left[ {{H}^{+}} \right]}\,\times \dfrac{\left[ {{H}^{+}} \right]}{{{10}^{-14}}}\,\,\]
Therefore, ${{k}_{2}}={{10}^{-20}}$ (as given forward rate constant ${{k}_{1}}={{10}^{-11}}\,mo{{l}^{-1}}L{{\sec }^{-1}}$) --- (6)
Now, in order to find the Arrhenius parameter, ${{A}_{b}}$ for backward reaction given that, $\Delta {{H}_{298}}=44kcal\,\text{and}\,{{E}_{a(f)}}=94kcal$ --------- (7)
As, the enthalpy $\Delta H=\,{{E}_{_{f}}}-{{E}_{b}}$
Substituting the values of (7) in this, we get, $44\,kcal=\,94\,kcal-{{E}_{b}}$, that is,
${{E}_{b}}=50\,kcal=50\times 1000\times 4.187\,\text{Joules}$ --------- (8)
Then, from the Arrhenius equation, for the backward reaction,
${{k}_{2}}={{A}_{b}}{{e}^{-{{E}_{b}}/RT}}$
Taking log on both sides:
$\log {{k}_{2}}=\log {{A}_{b}}-\dfrac{{{E}_{b}}}{RT}$
By substituting the values of equation (6) and (8) in the above equation, we get,
$\log {{10}^{-20}}=\log {{A}_{b}}-\dfrac{50\times 1000\times 4.187}{8.314\times 298}$
Therefore, the Arrhenius parameter is${{A}_{b}}=2.71\times {{10}^{16}}\,\text{L mo}{{\text{l}}^{\text{-1}}}\text{se}{{\text{c}}^{\text{-1}}}$ .
Thus, the backward rate constant and the Arrhenius parameter is given by option (A)- ${{K}_{b}}={{10}^{-20}},{{A}_{b}}=2.71\times {{10}^{16}}$.
Note: The hydrolysis constant and the dissociation constant of the acid is taken to be the ratio of the concentration of the product to the reactant, to the power of the coefficient which is the moles of the substance in the reaction.
Complete step by step solution:
It is given that a reaction between a weak acid, acetic acid $(C{{H}_{3}}COOH)$ and strong base, sodium hydroxide $(NaOH)$ takes place. It is a neutralization reaction, leading to the formation of sodium acetate salt and water, with the equilibrium constant ${{K}_{c}}$ , as follows:
$C{{H}_{3}}COOH+NaOH\rightleftharpoons C{{H}_{3}}COONa+{{H}_{2}}O$
Here, the forward rate constant is ${{k}_{1}}$ and backward rate constant is ${{k}_{2}}$. So, the ${{K}_{c}}$ is given by:
${{K}_{c}}=\dfrac{{{k}_{1}}}{{{k}_{2}}}$ ------ (1)
The reverse of the above reaction is known as the hydrolysis reaction of the salt, which completely dissociates into its ions in the solution. The solution is basic, due to the presence of hydroxide ions, as the acetate (conjugate base) abstracts a proton from the water molecule, with a hydrolysis constant ${{K}_{h}}$ , the reaction is as follows:
$C{{H}_{3}}COONa\to C{{H}_{3}}CO{{O}^{-}}+N{{a}^{+}}\text{(spectator}\,cat\text{ion)}$
Hydrolysis: $C{{H}_{3}}CO{{O}^{-}}+{{H}_{2}}O\rightleftarrows C{{H}_{3}}COOH+O{{H}^{-}}$
The hydrolysis constant of the reaction is,
\[{{K}_{h}}=\,\,\dfrac{\left[ C{{H}_{3}}COOH \right]\left[ O{{H}^{-}} \right]}{\left[ C{{H}_{3}}CO{{O}^{-}} \right]\left[ {{H}_{2}}O \right]}\,\,\,\] ------- (2)
Then, as the equilibrium constant and the hydrolysis constant are inversely proportional. It is given as:
\[{{K}_{c}}={{\left( {{K}_{h}} \right)}^{-1}}=\,\,\dfrac{\left[ C{{H}_{3}}CO{{O}^{-}} \right]\left[ {{H}_{2}}O \right]}{\left[ C{{H}_{3}}COOH \right]\left[ O{{H}^{-}} \right]}\,\,\] ------- (3)
It is also given that, the acetic acid with a ${{K}_{a}}$ , being a weak acid, it dissociates partially. We get the dissociation constant as,
\[{{K}_{a}}=\,\,\dfrac{\left[ C{{H}_{3}}CO{{O}^{-}} \right]\left[ {{H}^{+}} \right]}{\left[ C{{H}_{3}}COOH \right]}\,\,={{10}^{-5}}\]
We can get, $\dfrac{\left[ C{{H}_{3}}CO{{O}^{-}} \right]}{\left[ C{{H}_{3}}COOH \right]}=\dfrac{{{10}^{-5}}}{\left[ {{H}^{+}} \right]}$ ------- (4)
Also, as we know, the ionic product constant of water is:
${{K}_{W}}=\dfrac{\left[ {{H}^{+}} \right]\left[ O{{H}^{-}} \right]}{\left[ {{H}_{2}}O \right]}={{10}^{-14}}$
We can get, $\dfrac{\left[ {{H}^{+}} \right]}{\left[ {{10}^{-14}} \right]}=\dfrac{\left[ {{H}_{2}}O \right]}{\left[ O{{H}^{-}} \right]}$ -------- (5)
Now, we substitute the values of equation (4) and (5) in equation (3), we get,
\[{{K}_{c}}={{\left( {{K}_{h}} \right)}^{-1}}=\,\dfrac{{{10}^{-5}}}{\left[ {{H}^{+}} \right]}\,\times \dfrac{\left[ {{H}^{+}} \right]}{{{10}^{-14}}}\,\,\]
\[{{K}_{c}}=\dfrac{{{k}_{1}}}{{{k}_{2}}}=\,\dfrac{{{10}^{-5}}}{\left[ {{H}^{+}} \right]}\,\times \dfrac{\left[ {{H}^{+}} \right]}{{{10}^{-14}}}\,\,\]
Therefore, ${{k}_{2}}={{10}^{-20}}$ (as given forward rate constant ${{k}_{1}}={{10}^{-11}}\,mo{{l}^{-1}}L{{\sec }^{-1}}$) --- (6)
Now, in order to find the Arrhenius parameter, ${{A}_{b}}$ for backward reaction given that, $\Delta {{H}_{298}}=44kcal\,\text{and}\,{{E}_{a(f)}}=94kcal$ --------- (7)
As, the enthalpy $\Delta H=\,{{E}_{_{f}}}-{{E}_{b}}$
Substituting the values of (7) in this, we get, $44\,kcal=\,94\,kcal-{{E}_{b}}$, that is,
${{E}_{b}}=50\,kcal=50\times 1000\times 4.187\,\text{Joules}$ --------- (8)
Then, from the Arrhenius equation, for the backward reaction,
${{k}_{2}}={{A}_{b}}{{e}^{-{{E}_{b}}/RT}}$
Taking log on both sides:
$\log {{k}_{2}}=\log {{A}_{b}}-\dfrac{{{E}_{b}}}{RT}$
By substituting the values of equation (6) and (8) in the above equation, we get,
$\log {{10}^{-20}}=\log {{A}_{b}}-\dfrac{50\times 1000\times 4.187}{8.314\times 298}$
Therefore, the Arrhenius parameter is${{A}_{b}}=2.71\times {{10}^{16}}\,\text{L mo}{{\text{l}}^{\text{-1}}}\text{se}{{\text{c}}^{\text{-1}}}$ .
Thus, the backward rate constant and the Arrhenius parameter is given by option (A)- ${{K}_{b}}={{10}^{-20}},{{A}_{b}}=2.71\times {{10}^{16}}$.
Note: The hydrolysis constant and the dissociation constant of the acid is taken to be the ratio of the concentration of the product to the reactant, to the power of the coefficient which is the moles of the substance in the reaction.
Recently Updated Pages
Types of Solutions - Solution in Chemistry

Difference Between Crystalline and Amorphous Solid

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Thermodynamics Class 11 Notes: CBSE Chapter 5

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
