
If $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,\,(i=\sqrt{-1})$ , then ${{A}^{-1}}=$.
A. $\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$
B. $\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\,$
C. $\left( \begin{matrix}
i & 0 \\
0 & 2i \\
\end{matrix} \right)\,$
D. $\left( \begin{matrix}
0 & i \\
2i & 0 \\
\end{matrix} \right)\,$
Answer
216k+ views
Hint: In order to determine the value of ${{A}^{-1}}$, first we will calculate the determinant and the adjoint of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. Then we will substitute the values in the formula of calculating the inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. The adjoint of the matrix is calculated by interchanging the element of the principal diagonal and only change the sign of the other diagonal.
Formula Used: \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$ then $|A|=ad-bc$.
Complete step by step solution: We are given a matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$and we have to find its inverse ${{A}^{-1}}$ when $i=\sqrt{-1}$.
To find the inverse of the matrix we will use the formula \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\], so we will calculate determinant and adjoint of the matrix \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\] and then substitute in the formula. The value of the determinant must be non-zero because if the determinant is zero then inverse of that matrix will not exist.
First we will find the determinant of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. If the value of the determinant of the matrix
$|A|=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$
$=i\times \dfrac{i}{2}-0\times 0$
$=\dfrac{{{i}^{2}}}{2}$
Substituting the value $i=\sqrt{-1}$.
$=\dfrac{-1}{2}$
We will now determine the adjoint of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$.
Interchanging the diagonal of the principal diagonal and changing the sign of the other diagonal,
$adj(A)=\left( \begin{matrix}
i/2 & -0 \\
-0 & i \\
\end{matrix} \right)\,$
As Sign before $0$holds no value then,
$adj(A)=\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\,$
We will determine the inverse by substituting the values.
\[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
\[{{A}^{-1}}=\dfrac{1}{-1/2}\,\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\]
We will multiply the matrix by $\dfrac{-1}{2}$,
\[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\]
The inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$is \[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\], hence the correct option is (B).
Option ‘B’ is correct
Note: The adjoint of a $2\times 2$ matrix can be directly find by using this method. If there is a matrix $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$then adjoint can be calculated by using this \[adj(A)=\left( \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right)\].
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. Then we will substitute the values in the formula of calculating the inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. The adjoint of the matrix is calculated by interchanging the element of the principal diagonal and only change the sign of the other diagonal.
Formula Used: \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$ then $|A|=ad-bc$.
Complete step by step solution: We are given a matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$and we have to find its inverse ${{A}^{-1}}$ when $i=\sqrt{-1}$.
To find the inverse of the matrix we will use the formula \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\], so we will calculate determinant and adjoint of the matrix \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\] and then substitute in the formula. The value of the determinant must be non-zero because if the determinant is zero then inverse of that matrix will not exist.
First we will find the determinant of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. If the value of the determinant of the matrix
$|A|=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$
$=i\times \dfrac{i}{2}-0\times 0$
$=\dfrac{{{i}^{2}}}{2}$
Substituting the value $i=\sqrt{-1}$.
$=\dfrac{-1}{2}$
We will now determine the adjoint of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$.
Interchanging the diagonal of the principal diagonal and changing the sign of the other diagonal,
$adj(A)=\left( \begin{matrix}
i/2 & -0 \\
-0 & i \\
\end{matrix} \right)\,$
As Sign before $0$holds no value then,
$adj(A)=\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\,$
We will determine the inverse by substituting the values.
\[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
\[{{A}^{-1}}=\dfrac{1}{-1/2}\,\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\]
We will multiply the matrix by $\dfrac{-1}{2}$,
\[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\]
The inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$is \[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\], hence the correct option is (B).
Option ‘B’ is correct
Note: The adjoint of a $2\times 2$ matrix can be directly find by using this method. If there is a matrix $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$then adjoint can be calculated by using this \[adj(A)=\left( \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right)\].
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

