
If $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,\,(i=\sqrt{-1})$ , then ${{A}^{-1}}=$.
A. $\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$
B. $\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\,$
C. $\left( \begin{matrix}
i & 0 \\
0 & 2i \\
\end{matrix} \right)\,$
D. $\left( \begin{matrix}
0 & i \\
2i & 0 \\
\end{matrix} \right)\,$
Answer
161.1k+ views
Hint: In order to determine the value of ${{A}^{-1}}$, first we will calculate the determinant and the adjoint of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. Then we will substitute the values in the formula of calculating the inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. The adjoint of the matrix is calculated by interchanging the element of the principal diagonal and only change the sign of the other diagonal.
Formula Used: \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$ then $|A|=ad-bc$.
Complete step by step solution: We are given a matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$and we have to find its inverse ${{A}^{-1}}$ when $i=\sqrt{-1}$.
To find the inverse of the matrix we will use the formula \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\], so we will calculate determinant and adjoint of the matrix \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\] and then substitute in the formula. The value of the determinant must be non-zero because if the determinant is zero then inverse of that matrix will not exist.
First we will find the determinant of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. If the value of the determinant of the matrix
$|A|=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$
$=i\times \dfrac{i}{2}-0\times 0$
$=\dfrac{{{i}^{2}}}{2}$
Substituting the value $i=\sqrt{-1}$.
$=\dfrac{-1}{2}$
We will now determine the adjoint of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$.
Interchanging the diagonal of the principal diagonal and changing the sign of the other diagonal,
$adj(A)=\left( \begin{matrix}
i/2 & -0 \\
-0 & i \\
\end{matrix} \right)\,$
As Sign before $0$holds no value then,
$adj(A)=\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\,$
We will determine the inverse by substituting the values.
\[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
\[{{A}^{-1}}=\dfrac{1}{-1/2}\,\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\]
We will multiply the matrix by $\dfrac{-1}{2}$,
\[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\]
The inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$is \[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\], hence the correct option is (B).
Option ‘B’ is correct
Note: The adjoint of a $2\times 2$ matrix can be directly find by using this method. If there is a matrix $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$then adjoint can be calculated by using this \[adj(A)=\left( \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right)\].
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. Then we will substitute the values in the formula of calculating the inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. The adjoint of the matrix is calculated by interchanging the element of the principal diagonal and only change the sign of the other diagonal.
Formula Used: \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$ then $|A|=ad-bc$.
Complete step by step solution: We are given a matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$and we have to find its inverse ${{A}^{-1}}$ when $i=\sqrt{-1}$.
To find the inverse of the matrix we will use the formula \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\], so we will calculate determinant and adjoint of the matrix \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\] and then substitute in the formula. The value of the determinant must be non-zero because if the determinant is zero then inverse of that matrix will not exist.
First we will find the determinant of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. If the value of the determinant of the matrix
$|A|=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$
$=i\times \dfrac{i}{2}-0\times 0$
$=\dfrac{{{i}^{2}}}{2}$
Substituting the value $i=\sqrt{-1}$.
$=\dfrac{-1}{2}$
We will now determine the adjoint of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$.
Interchanging the diagonal of the principal diagonal and changing the sign of the other diagonal,
$adj(A)=\left( \begin{matrix}
i/2 & -0 \\
-0 & i \\
\end{matrix} \right)\,$
As Sign before $0$holds no value then,
$adj(A)=\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\,$
We will determine the inverse by substituting the values.
\[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
\[{{A}^{-1}}=\dfrac{1}{-1/2}\,\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\]
We will multiply the matrix by $\dfrac{-1}{2}$,
\[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\]
The inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$is \[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\], hence the correct option is (B).
Option ‘B’ is correct
Note: The adjoint of a $2\times 2$ matrix can be directly find by using this method. If there is a matrix $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$then adjoint can be calculated by using this \[adj(A)=\left( \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right)\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
