
If $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,\,(i=\sqrt{-1})$ , then ${{A}^{-1}}=$.
A. $\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$
B. $\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\,$
C. $\left( \begin{matrix}
i & 0 \\
0 & 2i \\
\end{matrix} \right)\,$
D. $\left( \begin{matrix}
0 & i \\
2i & 0 \\
\end{matrix} \right)\,$
Answer
232.8k+ views
Hint: In order to determine the value of ${{A}^{-1}}$, first we will calculate the determinant and the adjoint of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. Then we will substitute the values in the formula of calculating the inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. The adjoint of the matrix is calculated by interchanging the element of the principal diagonal and only change the sign of the other diagonal.
Formula Used: \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$ then $|A|=ad-bc$.
Complete step by step solution: We are given a matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$and we have to find its inverse ${{A}^{-1}}$ when $i=\sqrt{-1}$.
To find the inverse of the matrix we will use the formula \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\], so we will calculate determinant and adjoint of the matrix \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\] and then substitute in the formula. The value of the determinant must be non-zero because if the determinant is zero then inverse of that matrix will not exist.
First we will find the determinant of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. If the value of the determinant of the matrix
$|A|=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$
$=i\times \dfrac{i}{2}-0\times 0$
$=\dfrac{{{i}^{2}}}{2}$
Substituting the value $i=\sqrt{-1}$.
$=\dfrac{-1}{2}$
We will now determine the adjoint of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$.
Interchanging the diagonal of the principal diagonal and changing the sign of the other diagonal,
$adj(A)=\left( \begin{matrix}
i/2 & -0 \\
-0 & i \\
\end{matrix} \right)\,$
As Sign before $0$holds no value then,
$adj(A)=\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\,$
We will determine the inverse by substituting the values.
\[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
\[{{A}^{-1}}=\dfrac{1}{-1/2}\,\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\]
We will multiply the matrix by $\dfrac{-1}{2}$,
\[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\]
The inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$is \[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\], hence the correct option is (B).
Option ‘B’ is correct
Note: The adjoint of a $2\times 2$ matrix can be directly find by using this method. If there is a matrix $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$then adjoint can be calculated by using this \[adj(A)=\left( \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right)\].
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. Then we will substitute the values in the formula of calculating the inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. The adjoint of the matrix is calculated by interchanging the element of the principal diagonal and only change the sign of the other diagonal.
Formula Used: \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
If $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$ then $|A|=ad-bc$.
Complete step by step solution: We are given a matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$and we have to find its inverse ${{A}^{-1}}$ when $i=\sqrt{-1}$.
To find the inverse of the matrix we will use the formula \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\], so we will calculate determinant and adjoint of the matrix \[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\] and then substitute in the formula. The value of the determinant must be non-zero because if the determinant is zero then inverse of that matrix will not exist.
First we will find the determinant of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$. If the value of the determinant of the matrix
$|A|=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$
$=i\times \dfrac{i}{2}-0\times 0$
$=\dfrac{{{i}^{2}}}{2}$
Substituting the value $i=\sqrt{-1}$.
$=\dfrac{-1}{2}$
We will now determine the adjoint of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$.
Interchanging the diagonal of the principal diagonal and changing the sign of the other diagonal,
$adj(A)=\left( \begin{matrix}
i/2 & -0 \\
-0 & i \\
\end{matrix} \right)\,$
As Sign before $0$holds no value then,
$adj(A)=\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\,$
We will determine the inverse by substituting the values.
\[{{A}^{-1}}=\dfrac{1}{|A|}\,adj(A)\]
\[{{A}^{-1}}=\dfrac{1}{-1/2}\,\left( \begin{matrix}
i/2 & 0 \\
0 & i \\
\end{matrix} \right)\]
We will multiply the matrix by $\dfrac{-1}{2}$,
\[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\]
The inverse of the matrix $A=\left( \begin{matrix}
i & 0 \\
0 & i/2 \\
\end{matrix} \right)\,$is \[{{A}^{-1}}=\,\left( \begin{matrix}
-i & 0 \\
0 & -2i \\
\end{matrix} \right)\], hence the correct option is (B).
Option ‘B’ is correct
Note: The adjoint of a $2\times 2$ matrix can be directly find by using this method. If there is a matrix $A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\,$then adjoint can be calculated by using this \[adj(A)=\left( \begin{matrix}
d & -b \\
-c & a \\
\end{matrix} \right)\].
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 9 Straight Lines (2025-26)

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

If 16 identical pencils are distributed among 4 children class 11 maths JEE_Advanced

