
If A=$\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \\ \end{matrix} \right] $then$ A^{-1}$ [DCE 1999]
a)$A$
b) $A^2$
c) $A^3$
d) $A^4$
Answer
161.4k+ views
Hint: We have to find $A^{-1}$ of this $3\times3$ matrix, but in the options we have $A^2$, $A^3$, and $A^4$. So for that firstly we will determine the determinant of the matrix $|A|$ then, make $adjA$ and put the values in the inverse matrix formula. After getting the inverse, evaluate the options given and compare results.
Formula used: Inverse Matrix formula: $A^{-1}=\dfrac{AdjA}{|A|}$
Complete step by step solution: Let $A=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]$
Finding determinant of $A$;
$|A|=3[(-3)(1)-4(-1)]+3[2(1)-4(0)]+4[2(-1)-0(4)]\\
|A|=3(-3+4)+3(2)+4(-2)\\
|A|=3+6-8\\
|A|=1$
Since its determinant is not zero, it's an invertible matrix.
Now, find the adjoint of matrix $A$ by taking the transpose of the cofactor matrix.
Cofactors for each element of matrix A are given by;
$C_{11}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{11}=-3+4\\
\Rightarrow C_{11}=1
C_{12}=-\begin{vmatrix}2 & 4 \\ 0 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{12}=-2-0\\
\Rightarrow C_{12}=-2
C_{13}=\begin{vmatrix}2 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{13}=-2-0\\
\Rightarrow C_{13}=-2$
$C_{21}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{21}=3
C_{22}=-\begin{vmatrix}3 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{22}=-(-3)\\
\Rightarrow C_{22}=3
C_{23}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{23}=0$
$C_{31}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{31}=0
C_{32}=-\begin{vmatrix}3 & 4 \\ 2 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{32}=-4
C_{33}=\begin{vmatrix} 3 & -3 \\ 2 & -3 \\ \end{vmatrix}\\
\Rightarrow C_{33}=-3$
Therefore, the adjoint matrix is
$Adj A=\left[ \begin{matrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\0 & -4 & -3 \\ \end{matrix} \right]^{-1}\\
Adj A=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Substitute the adjoint matrix and determine in the inverse matrix formula we get;
$A^{-1}=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Let’s evaluate $A^2$ i.e.$ A^2=A.A$
$A^2=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 9-6 & -9+9-4 & 12-12+4 \\ 6-6 & -6+9-4 & 8-12+4 \\-2 & 3-1 & -4+1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right]$
Since it is not equal to $A^{-1}$.
$A^3=A^2.A$
$A^3$
=$\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 9-8 & -9+12-4 & 12-16+4 \\ -2 & 3 & -4 \\-6+4 & 6-6+3 & -8+8-3 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Hence,$ A^{-1}=A^3$
Thus, Option (C) is correct.
Note: Remember ${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a $3\times3$ matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Formula used: Inverse Matrix formula: $A^{-1}=\dfrac{AdjA}{|A|}$
Complete step by step solution: Let $A=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]$
Finding determinant of $A$;
$|A|=3[(-3)(1)-4(-1)]+3[2(1)-4(0)]+4[2(-1)-0(4)]\\
|A|=3(-3+4)+3(2)+4(-2)\\
|A|=3+6-8\\
|A|=1$
Since its determinant is not zero, it's an invertible matrix.
Now, find the adjoint of matrix $A$ by taking the transpose of the cofactor matrix.
Cofactors for each element of matrix A are given by;
$C_{11}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{11}=-3+4\\
\Rightarrow C_{11}=1
C_{12}=-\begin{vmatrix}2 & 4 \\ 0 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{12}=-2-0\\
\Rightarrow C_{12}=-2
C_{13}=\begin{vmatrix}2 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{13}=-2-0\\
\Rightarrow C_{13}=-2$
$C_{21}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{21}=3
C_{22}=-\begin{vmatrix}3 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{22}=-(-3)\\
\Rightarrow C_{22}=3
C_{23}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{23}=0$
$C_{31}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{31}=0
C_{32}=-\begin{vmatrix}3 & 4 \\ 2 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{32}=-4
C_{33}=\begin{vmatrix} 3 & -3 \\ 2 & -3 \\ \end{vmatrix}\\
\Rightarrow C_{33}=-3$
Therefore, the adjoint matrix is
$Adj A=\left[ \begin{matrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\0 & -4 & -3 \\ \end{matrix} \right]^{-1}\\
Adj A=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Substitute the adjoint matrix and determine in the inverse matrix formula we get;
$A^{-1}=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Let’s evaluate $A^2$ i.e.$ A^2=A.A$
$A^2=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 9-6 & -9+9-4 & 12-12+4 \\ 6-6 & -6+9-4 & 8-12+4 \\-2 & 3-1 & -4+1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right]$
Since it is not equal to $A^{-1}$.
$A^3=A^2.A$
$A^3$
=$\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 9-8 & -9+12-4 & 12-16+4 \\ -2 & 3 & -4 \\-6+4 & 6-6+3 & -8+8-3 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Hence,$ A^{-1}=A^3$
Thus, Option (C) is correct.
Note: Remember ${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a $3\times3$ matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
