
If A=$\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \\ \end{matrix} \right] $then$ A^{-1}$ [DCE 1999]
a)$A$
b) $A^2$
c) $A^3$
d) $A^4$
Answer
218.4k+ views
Hint: We have to find $A^{-1}$ of this $3\times3$ matrix, but in the options we have $A^2$, $A^3$, and $A^4$. So for that firstly we will determine the determinant of the matrix $|A|$ then, make $adjA$ and put the values in the inverse matrix formula. After getting the inverse, evaluate the options given and compare results.
Formula used: Inverse Matrix formula: $A^{-1}=\dfrac{AdjA}{|A|}$
Complete step by step solution: Let $A=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]$
Finding determinant of $A$;
$|A|=3[(-3)(1)-4(-1)]+3[2(1)-4(0)]+4[2(-1)-0(4)]\\
|A|=3(-3+4)+3(2)+4(-2)\\
|A|=3+6-8\\
|A|=1$
Since its determinant is not zero, it's an invertible matrix.
Now, find the adjoint of matrix $A$ by taking the transpose of the cofactor matrix.
Cofactors for each element of matrix A are given by;
$C_{11}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{11}=-3+4\\
\Rightarrow C_{11}=1
C_{12}=-\begin{vmatrix}2 & 4 \\ 0 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{12}=-2-0\\
\Rightarrow C_{12}=-2
C_{13}=\begin{vmatrix}2 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{13}=-2-0\\
\Rightarrow C_{13}=-2$
$C_{21}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{21}=3
C_{22}=-\begin{vmatrix}3 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{22}=-(-3)\\
\Rightarrow C_{22}=3
C_{23}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{23}=0$
$C_{31}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{31}=0
C_{32}=-\begin{vmatrix}3 & 4 \\ 2 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{32}=-4
C_{33}=\begin{vmatrix} 3 & -3 \\ 2 & -3 \\ \end{vmatrix}\\
\Rightarrow C_{33}=-3$
Therefore, the adjoint matrix is
$Adj A=\left[ \begin{matrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\0 & -4 & -3 \\ \end{matrix} \right]^{-1}\\
Adj A=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Substitute the adjoint matrix and determine in the inverse matrix formula we get;
$A^{-1}=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Let’s evaluate $A^2$ i.e.$ A^2=A.A$
$A^2=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 9-6 & -9+9-4 & 12-12+4 \\ 6-6 & -6+9-4 & 8-12+4 \\-2 & 3-1 & -4+1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right]$
Since it is not equal to $A^{-1}$.
$A^3=A^2.A$
$A^3$
=$\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 9-8 & -9+12-4 & 12-16+4 \\ -2 & 3 & -4 \\-6+4 & 6-6+3 & -8+8-3 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Hence,$ A^{-1}=A^3$
Thus, Option (C) is correct.
Note: Remember ${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a $3\times3$ matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Formula used: Inverse Matrix formula: $A^{-1}=\dfrac{AdjA}{|A|}$
Complete step by step solution: Let $A=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]$
Finding determinant of $A$;
$|A|=3[(-3)(1)-4(-1)]+3[2(1)-4(0)]+4[2(-1)-0(4)]\\
|A|=3(-3+4)+3(2)+4(-2)\\
|A|=3+6-8\\
|A|=1$
Since its determinant is not zero, it's an invertible matrix.
Now, find the adjoint of matrix $A$ by taking the transpose of the cofactor matrix.
Cofactors for each element of matrix A are given by;
$C_{11}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{11}=-3+4\\
\Rightarrow C_{11}=1
C_{12}=-\begin{vmatrix}2 & 4 \\ 0 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{12}=-2-0\\
\Rightarrow C_{12}=-2
C_{13}=\begin{vmatrix}2 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{13}=-2-0\\
\Rightarrow C_{13}=-2$
$C_{21}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{21}=3
C_{22}=-\begin{vmatrix}3 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{22}=-(-3)\\
\Rightarrow C_{22}=3
C_{23}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{23}=0$
$C_{31}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{31}=0
C_{32}=-\begin{vmatrix}3 & 4 \\ 2 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{32}=-4
C_{33}=\begin{vmatrix} 3 & -3 \\ 2 & -3 \\ \end{vmatrix}\\
\Rightarrow C_{33}=-3$
Therefore, the adjoint matrix is
$Adj A=\left[ \begin{matrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\0 & -4 & -3 \\ \end{matrix} \right]^{-1}\\
Adj A=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Substitute the adjoint matrix and determine in the inverse matrix formula we get;
$A^{-1}=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Let’s evaluate $A^2$ i.e.$ A^2=A.A$
$A^2=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 9-6 & -9+9-4 & 12-12+4 \\ 6-6 & -6+9-4 & 8-12+4 \\-2 & 3-1 & -4+1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right]$
Since it is not equal to $A^{-1}$.
$A^3=A^2.A$
$A^3$
=$\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 9-8 & -9+12-4 & 12-16+4 \\ -2 & 3 & -4 \\-6+4 & 6-6+3 & -8+8-3 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Hence,$ A^{-1}=A^3$
Thus, Option (C) is correct.
Note: Remember ${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a $3\times3$ matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

