
If $A=\left[ \begin{matrix}
{}^{1}/{}_{3} & 2 \\
0 & 2x-3\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right],B=\left[ \begin{matrix}
3 & 6 \\
0 & -1 \\
\end{matrix} \right]$ and $AB = I$ , then what is the value of$x$ ?
A. $- 1$
B. $1$
C. $0$
D. $2$
Answer
217.5k+ views
Hint: In the above question, we are provided two matrices $A$ and $B$ such that $AB = I$ . Perform Matrix Multiplication and calculate the product $AB$ . Then, equate each of its elements to the corresponding elements of the identity matrix and calculate the value of $x$ .
Complete step by step Solution:
We are given two matrices $A$ and $B$ such that $A=\left[ \begin{matrix}
{}^{1}/{}_{3} & 2 \\
0 & 2x-3\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right],B=\left[ \begin{matrix}
3 & 6 \\
0 & -1 \\
\end{matrix} \right]$ and $AB = I$.
Substituting the values of $A$ and $B$ in $AB = I$,
$\left[ \begin{matrix}
\text{ }~\text{ }{}^{1}/{}_{3} & 2 \\
0 & 2x-3 \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }~\text{ }3 & 6 \\
0 & -1 \\
\end{matrix} \right]=I$
Performing Matrix Multiplication,
$\left[ \begin{matrix}
\frac{1}{3}\times 3+2\times 0 & \frac{1}{3}\times 6+2\times \left( -1 \right) \\
\text{ }\!\!~\!\!\text{ }0\times 3+\left( 2x-3 \right)\times 0 & 0\times 6+\left( 2x-3 \right)\times \left( -1 \right) \\
\end{matrix} \right]=I$Simplifying further,
$\left[ \begin{matrix}
1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -2x+3 \\
\end{matrix} \right]=I$We know that the Identity Matrix of order $2$ is $I=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ .
Therefore, substituting this,
$\left[ \begin{matrix}
1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -2x+3 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
0 & 1 \\
\end{matrix} \right]$Comparing the elements of the matrix on the Left-Hand side with the one on the Right-Hand side,
$- 2x + 3 = 1$
This gives:
$x = 1$
Hence, the value of $x$ is $1$.
Therefore, the correct option is (B).
Note: Two matrices $A$ and $B$ are said to be equal to each other when they both are of the same order and when every element of matrix $A$ is equal to the corresponding elements of matrix $B$ .
Complete step by step Solution:
We are given two matrices $A$ and $B$ such that $A=\left[ \begin{matrix}
{}^{1}/{}_{3} & 2 \\
0 & 2x-3\text{ }\!\!~\!\!\text{ } \\
\end{matrix} \right],B=\left[ \begin{matrix}
3 & 6 \\
0 & -1 \\
\end{matrix} \right]$ and $AB = I$.
Substituting the values of $A$ and $B$ in $AB = I$,
$\left[ \begin{matrix}
\text{ }~\text{ }{}^{1}/{}_{3} & 2 \\
0 & 2x-3 \\
\end{matrix} \right]\times \left[ \begin{matrix}
\text{ }~\text{ }3 & 6 \\
0 & -1 \\
\end{matrix} \right]=I$
Performing Matrix Multiplication,
$\left[ \begin{matrix}
\frac{1}{3}\times 3+2\times 0 & \frac{1}{3}\times 6+2\times \left( -1 \right) \\
\text{ }\!\!~\!\!\text{ }0\times 3+\left( 2x-3 \right)\times 0 & 0\times 6+\left( 2x-3 \right)\times \left( -1 \right) \\
\end{matrix} \right]=I$Simplifying further,
$\left[ \begin{matrix}
1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -2x+3 \\
\end{matrix} \right]=I$We know that the Identity Matrix of order $2$ is $I=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
0 & 1 \\
\end{matrix} \right]$ .
Therefore, substituting this,
$\left[ \begin{matrix}
1 & 0 \\
\text{ }\!\!~\!\!\text{ }0 & -2x+3 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }1 & 0 \\
0 & 1 \\
\end{matrix} \right]$Comparing the elements of the matrix on the Left-Hand side with the one on the Right-Hand side,
$- 2x + 3 = 1$
This gives:
$x = 1$
Hence, the value of $x$ is $1$.
Therefore, the correct option is (B).
Note: Two matrices $A$ and $B$ are said to be equal to each other when they both are of the same order and when every element of matrix $A$ is equal to the corresponding elements of matrix $B$ .
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

