
If $A=\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$ , $C=\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$ then 5A-3B-2C is equal to ?
A . $\left( \begin{matrix}
8 & 20 \\
7 & 9 \\
\end{matrix} \right)$
B. $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
C. $\left( \begin{matrix}
-8 & 20 \\
-7 & 9 \\
\end{matrix} \right)$
D. $\left( \begin{matrix}
8 & 7 \\
-20 & -9 \\
\end{matrix} \right)$
Answer
216.3k+ views
Hint:In this question, we are given the matrix A, B, and C and we have to find the value of 5A-3B-2C. To solve this, first, we multiply 5 with matrix A, then 3 with matrix B, and 2 with matrix C. After multiplying them, we add and subtract the terms and get the desired result and choose the correct option.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$ and $C=\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
All the matrices are of $2\times 2$ order.
We have to find the value of 5A-3B-2C
First, we multiply 5 with matrix A
5A = 5$\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$
5A = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$
Now we multiply 3 with matrix B
3B = 3$\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$
3B = $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$
Now we multiply 2 with matrix C
2C = 2$\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
2C = $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
Now we add and subtract the matrices according to our given equation.
Now 5A-3B-2C = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5-(-3)-0 & -10-12-(-2) \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5+3 & -10-12+2 \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
Simplifying further, we get
5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Thus the value of 5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Keep in mind before adding and subtracting any matrices that they have an equal number of columns and rows to be added. As the given matrices are of order $2\times 2$, so we can add it simply. Similarly we can add a $2\times 3$ matrix with a $2\times 3$ matrix or $3\times 3$ matrix with $3\times 3$ matrix. However, we cannot add $2\times 3$ matrix with a $3\times 2$ matrix. Similarly, we cannot add $2\times 2$ matrix with a $3\times 3$ matrix. The order in which we add the matrix is not important because the addition of two matrices is commutative.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$ and $C=\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
All the matrices are of $2\times 2$ order.
We have to find the value of 5A-3B-2C
First, we multiply 5 with matrix A
5A = 5$\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$
5A = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$
Now we multiply 3 with matrix B
3B = 3$\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$
3B = $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$
Now we multiply 2 with matrix C
2C = 2$\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
2C = $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
Now we add and subtract the matrices according to our given equation.
Now 5A-3B-2C = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5-(-3)-0 & -10-12-(-2) \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5+3 & -10-12+2 \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
Simplifying further, we get
5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Thus the value of 5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Keep in mind before adding and subtracting any matrices that they have an equal number of columns and rows to be added. As the given matrices are of order $2\times 2$, so we can add it simply. Similarly we can add a $2\times 3$ matrix with a $2\times 3$ matrix or $3\times 3$ matrix with $3\times 3$ matrix. However, we cannot add $2\times 3$ matrix with a $3\times 2$ matrix. Similarly, we cannot add $2\times 2$ matrix with a $3\times 3$ matrix. The order in which we add the matrix is not important because the addition of two matrices is commutative.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
Amortization Calculator – Loan Schedule, EMI & Table

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

