
If $A=\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$ , $C=\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$ then 5A-3B-2C is equal to ?
A . $\left( \begin{matrix}
8 & 20 \\
7 & 9 \\
\end{matrix} \right)$
B. $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
C. $\left( \begin{matrix}
-8 & 20 \\
-7 & 9 \\
\end{matrix} \right)$
D. $\left( \begin{matrix}
8 & 7 \\
-20 & -9 \\
\end{matrix} \right)$
Answer
161.4k+ views
Hint:In this question, we are given the matrix A, B, and C and we have to find the value of 5A-3B-2C. To solve this, first, we multiply 5 with matrix A, then 3 with matrix B, and 2 with matrix C. After multiplying them, we add and subtract the terms and get the desired result and choose the correct option.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$ and $C=\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
All the matrices are of $2\times 2$ order.
We have to find the value of 5A-3B-2C
First, we multiply 5 with matrix A
5A = 5$\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$
5A = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$
Now we multiply 3 with matrix B
3B = 3$\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$
3B = $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$
Now we multiply 2 with matrix C
2C = 2$\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
2C = $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
Now we add and subtract the matrices according to our given equation.
Now 5A-3B-2C = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5-(-3)-0 & -10-12-(-2) \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5+3 & -10-12+2 \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
Simplifying further, we get
5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Thus the value of 5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Keep in mind before adding and subtracting any matrices that they have an equal number of columns and rows to be added. As the given matrices are of order $2\times 2$, so we can add it simply. Similarly we can add a $2\times 3$ matrix with a $2\times 3$ matrix or $3\times 3$ matrix with $3\times 3$ matrix. However, we cannot add $2\times 3$ matrix with a $3\times 2$ matrix. Similarly, we cannot add $2\times 2$ matrix with a $3\times 3$ matrix. The order in which we add the matrix is not important because the addition of two matrices is commutative.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$ and $C=\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
All the matrices are of $2\times 2$ order.
We have to find the value of 5A-3B-2C
First, we multiply 5 with matrix A
5A = 5$\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$
5A = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$
Now we multiply 3 with matrix B
3B = 3$\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$
3B = $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$
Now we multiply 2 with matrix C
2C = 2$\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
2C = $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
Now we add and subtract the matrices according to our given equation.
Now 5A-3B-2C = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5-(-3)-0 & -10-12-(-2) \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5+3 & -10-12+2 \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
Simplifying further, we get
5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Thus the value of 5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Keep in mind before adding and subtracting any matrices that they have an equal number of columns and rows to be added. As the given matrices are of order $2\times 2$, so we can add it simply. Similarly we can add a $2\times 3$ matrix with a $2\times 3$ matrix or $3\times 3$ matrix with $3\times 3$ matrix. However, we cannot add $2\times 3$ matrix with a $3\times 2$ matrix. Similarly, we cannot add $2\times 2$ matrix with a $3\times 3$ matrix. The order in which we add the matrix is not important because the addition of two matrices is commutative.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
