
If
$A=\left( \begin{matrix}
1 & 2 & -1 \\
3 & 0 & 2 \\
4 & 5 & 0 \\
\end{matrix} \right)$,
$B=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3 \\
\end{matrix} \right)$ then $AB$ is
A. $\left[ \begin{matrix}
5 & 1 & -3 \\
3 & 2 & 6 \\
14 & 5 & 0 \\
\end{matrix} \right]$
B. $\left[ \begin{matrix}
11 & 4 & 3 \\
1 & 2 & 3 \\
0 & 3 & 3 \\
\end{matrix} \right]$
C. $\left[ \begin{matrix}
1 & 8 & 4 \\
2 & 9 & 6 \\
0 & 2 & 0 \\
\end{matrix} \right]$
D. $\left[ \begin{matrix}
0 & 1 & 2 \\
5 & 4 & 3 \\
1 & 8 & 2 \\
\end{matrix} \right]$
Answer
164.4k+ views
Hint: In this Question, we have to find the product of two matrices, Matrix A and Matrix B. we have to multiply each element of a row of matrix A with each element of a column of matrix B. Then adding all the pairs will give us the final answer.
Formula Used: A matrix is denoted by $A=\left[ {{a}_{ij}} \right]$ where $i$ represents rows and $j$ represents columns
Then, the multiplication of two $3\times 3$ matrices is as follows:
If $A=\left[ {{a}_{ij}} \right]$ is an $m\times n$ matrix and $B=\left[ {{b}_{ij}} \right]$ is $n\times p$ matrix, the product $[AB]$ becomes an $m\times p$ matrix
Consider matrix
$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
and matrix
$B=\left( \begin{matrix}
{{b}_{11}} & {{b}_{12}} & {{b}_{13}} \\
{{b}_{21}} & {{b}_{22}} & {{b}_{23}} \\
{{b}_{31}} & {{b}_{32}} & {{b}_{33}} \\
\end{matrix} \right)$
Then the product of these two matrices is calculated as
$\left( \begin{matrix}
{{a}_{11}}{{b}_{11}}+{{a}_{12}}{{b}_{21}}+{{a}_{13}}{{b}_{31}} & {{a}_{11}}{{b}_{12}}+{{a}_{12}}{{b}_{22}}+{{a}_{13}}{{b}_{32}} & {{a}_{11}}{{b}_{13}}+{{a}_{12}}{{b}_{23}}+{{a}_{13}}{{b}_{33}} \\
{{a}_{21}}{{b}_{11}}+{{a}_{22}}{{b}_{21}}+{{a}_{23}}{{b}_{31}} & {{a}_{21}}{{b}_{12}}+{{a}_{22}}{{b}_{22}}+{{a}_{23}}{{b}_{32}} & {{a}_{21}}{{b}_{13}}+{{a}_{22}}{{b}_{23}}+{{a}_{23}}{{b}_{33}} \\
{{a}_{31}}{{b}_{11}}+{{a}_{32}}{{b}_{21}}+{{a}_{33}}{{b}_{31}} & {{a}_{31}}{{b}_{12}}+{{a}_{32}}{{b}_{22}}+{{a}_{33}}{{b}_{32}} & {{a}_{31}}{{b}_{13}}+{{a}_{32}}{{b}_{23}}+{{a}_{33}}{{b}_{33}} \\
\end{matrix} \right)$
Complete step by step solution: The given two matrices are
$A=\left( \begin{matrix}
1 & 2 & -1 \\
3 & 0 & 2 \\
4 & 5 & 0 \\
\end{matrix} \right)$
and
$B=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3 \\
\end{matrix} \right)$
For finding the product of these two matrices we have to multiply each element of row of Matrix A to each element of column of Matrix B.
$\begin{align}
& AB=\left( \begin{matrix}
1\times 1+2\times 2+(-1)(0) & 1\times 0+2\times 1+(-1)(1) & 1\times 0+2\times 0+(-1)(3) \\
3\times 1+0\times 2+2\times 0 & 3\times 0+0\times 1+2\times 1 & 3\times 0+0\times 0+2\times 3 \\
4\times 1+5\times 2+0\times 0 & 4\times 0+5\times 1+0\times 0 & 4\times 0+5\times 0+0\times 3 \\
\end{matrix} \right) \\
& \text{ }=\left( \begin{matrix}
1+4+0 & 0+2-1 & 0+0-3 \\
3+0+0 & 0+0+2 & 0+0+6 \\
4+10+0 & 0+5+0 & 0+0+0 \\
\end{matrix} \right) \\
& \text{ }=\left( \begin{matrix}
5 & 1 & -3 \\
3 & 2 & 6 \\
14 & 5 & 0 \\
\end{matrix} \right) \\
\end{align}$
Hence, this is the required solution
Option ‘A’ is correct
Note: Here, we may go wrong with the multiplication of 3\times 3 matrices and can exchange rows to columns or columns to rows. We have to keep in mind that we have to multiply the row of Matrix A by the column of matrix B.
Formula Used: A matrix is denoted by $A=\left[ {{a}_{ij}} \right]$ where $i$ represents rows and $j$ represents columns
Then, the multiplication of two $3\times 3$ matrices is as follows:
If $A=\left[ {{a}_{ij}} \right]$ is an $m\times n$ matrix and $B=\left[ {{b}_{ij}} \right]$ is $n\times p$ matrix, the product $[AB]$ becomes an $m\times p$ matrix
Consider matrix
$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
and matrix
$B=\left( \begin{matrix}
{{b}_{11}} & {{b}_{12}} & {{b}_{13}} \\
{{b}_{21}} & {{b}_{22}} & {{b}_{23}} \\
{{b}_{31}} & {{b}_{32}} & {{b}_{33}} \\
\end{matrix} \right)$
Then the product of these two matrices is calculated as
$\left( \begin{matrix}
{{a}_{11}}{{b}_{11}}+{{a}_{12}}{{b}_{21}}+{{a}_{13}}{{b}_{31}} & {{a}_{11}}{{b}_{12}}+{{a}_{12}}{{b}_{22}}+{{a}_{13}}{{b}_{32}} & {{a}_{11}}{{b}_{13}}+{{a}_{12}}{{b}_{23}}+{{a}_{13}}{{b}_{33}} \\
{{a}_{21}}{{b}_{11}}+{{a}_{22}}{{b}_{21}}+{{a}_{23}}{{b}_{31}} & {{a}_{21}}{{b}_{12}}+{{a}_{22}}{{b}_{22}}+{{a}_{23}}{{b}_{32}} & {{a}_{21}}{{b}_{13}}+{{a}_{22}}{{b}_{23}}+{{a}_{23}}{{b}_{33}} \\
{{a}_{31}}{{b}_{11}}+{{a}_{32}}{{b}_{21}}+{{a}_{33}}{{b}_{31}} & {{a}_{31}}{{b}_{12}}+{{a}_{32}}{{b}_{22}}+{{a}_{33}}{{b}_{32}} & {{a}_{31}}{{b}_{13}}+{{a}_{32}}{{b}_{23}}+{{a}_{33}}{{b}_{33}} \\
\end{matrix} \right)$
Complete step by step solution: The given two matrices are
$A=\left( \begin{matrix}
1 & 2 & -1 \\
3 & 0 & 2 \\
4 & 5 & 0 \\
\end{matrix} \right)$
and
$B=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3 \\
\end{matrix} \right)$
For finding the product of these two matrices we have to multiply each element of row of Matrix A to each element of column of Matrix B.
$\begin{align}
& AB=\left( \begin{matrix}
1\times 1+2\times 2+(-1)(0) & 1\times 0+2\times 1+(-1)(1) & 1\times 0+2\times 0+(-1)(3) \\
3\times 1+0\times 2+2\times 0 & 3\times 0+0\times 1+2\times 1 & 3\times 0+0\times 0+2\times 3 \\
4\times 1+5\times 2+0\times 0 & 4\times 0+5\times 1+0\times 0 & 4\times 0+5\times 0+0\times 3 \\
\end{matrix} \right) \\
& \text{ }=\left( \begin{matrix}
1+4+0 & 0+2-1 & 0+0-3 \\
3+0+0 & 0+0+2 & 0+0+6 \\
4+10+0 & 0+5+0 & 0+0+0 \\
\end{matrix} \right) \\
& \text{ }=\left( \begin{matrix}
5 & 1 & -3 \\
3 & 2 & 6 \\
14 & 5 & 0 \\
\end{matrix} \right) \\
\end{align}$
Hence, this is the required solution
Option ‘A’ is correct
Note: Here, we may go wrong with the multiplication of 3\times 3 matrices and can exchange rows to columns or columns to rows. We have to keep in mind that we have to multiply the row of Matrix A by the column of matrix B.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Difference Between Natural and Whole Numbers: JEE Main 2024

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
