
If
$A=\left( \begin{matrix}
1 & 2 & -1 \\
3 & 0 & 2 \\
4 & 5 & 0 \\
\end{matrix} \right)$,
$B=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3 \\
\end{matrix} \right)$ then $AB$ is
A. $\left[ \begin{matrix}
5 & 1 & -3 \\
3 & 2 & 6 \\
14 & 5 & 0 \\
\end{matrix} \right]$
B. $\left[ \begin{matrix}
11 & 4 & 3 \\
1 & 2 & 3 \\
0 & 3 & 3 \\
\end{matrix} \right]$
C. $\left[ \begin{matrix}
1 & 8 & 4 \\
2 & 9 & 6 \\
0 & 2 & 0 \\
\end{matrix} \right]$
D. $\left[ \begin{matrix}
0 & 1 & 2 \\
5 & 4 & 3 \\
1 & 8 & 2 \\
\end{matrix} \right]$
Answer
162.9k+ views
Hint: In this Question, we have to find the product of two matrices, Matrix A and Matrix B. we have to multiply each element of a row of matrix A with each element of a column of matrix B. Then adding all the pairs will give us the final answer.
Formula Used: A matrix is denoted by $A=\left[ {{a}_{ij}} \right]$ where $i$ represents rows and $j$ represents columns
Then, the multiplication of two $3\times 3$ matrices is as follows:
If $A=\left[ {{a}_{ij}} \right]$ is an $m\times n$ matrix and $B=\left[ {{b}_{ij}} \right]$ is $n\times p$ matrix, the product $[AB]$ becomes an $m\times p$ matrix
Consider matrix
$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
and matrix
$B=\left( \begin{matrix}
{{b}_{11}} & {{b}_{12}} & {{b}_{13}} \\
{{b}_{21}} & {{b}_{22}} & {{b}_{23}} \\
{{b}_{31}} & {{b}_{32}} & {{b}_{33}} \\
\end{matrix} \right)$
Then the product of these two matrices is calculated as
$\left( \begin{matrix}
{{a}_{11}}{{b}_{11}}+{{a}_{12}}{{b}_{21}}+{{a}_{13}}{{b}_{31}} & {{a}_{11}}{{b}_{12}}+{{a}_{12}}{{b}_{22}}+{{a}_{13}}{{b}_{32}} & {{a}_{11}}{{b}_{13}}+{{a}_{12}}{{b}_{23}}+{{a}_{13}}{{b}_{33}} \\
{{a}_{21}}{{b}_{11}}+{{a}_{22}}{{b}_{21}}+{{a}_{23}}{{b}_{31}} & {{a}_{21}}{{b}_{12}}+{{a}_{22}}{{b}_{22}}+{{a}_{23}}{{b}_{32}} & {{a}_{21}}{{b}_{13}}+{{a}_{22}}{{b}_{23}}+{{a}_{23}}{{b}_{33}} \\
{{a}_{31}}{{b}_{11}}+{{a}_{32}}{{b}_{21}}+{{a}_{33}}{{b}_{31}} & {{a}_{31}}{{b}_{12}}+{{a}_{32}}{{b}_{22}}+{{a}_{33}}{{b}_{32}} & {{a}_{31}}{{b}_{13}}+{{a}_{32}}{{b}_{23}}+{{a}_{33}}{{b}_{33}} \\
\end{matrix} \right)$
Complete step by step solution: The given two matrices are
$A=\left( \begin{matrix}
1 & 2 & -1 \\
3 & 0 & 2 \\
4 & 5 & 0 \\
\end{matrix} \right)$
and
$B=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3 \\
\end{matrix} \right)$
For finding the product of these two matrices we have to multiply each element of row of Matrix A to each element of column of Matrix B.
$\begin{align}
& AB=\left( \begin{matrix}
1\times 1+2\times 2+(-1)(0) & 1\times 0+2\times 1+(-1)(1) & 1\times 0+2\times 0+(-1)(3) \\
3\times 1+0\times 2+2\times 0 & 3\times 0+0\times 1+2\times 1 & 3\times 0+0\times 0+2\times 3 \\
4\times 1+5\times 2+0\times 0 & 4\times 0+5\times 1+0\times 0 & 4\times 0+5\times 0+0\times 3 \\
\end{matrix} \right) \\
& \text{ }=\left( \begin{matrix}
1+4+0 & 0+2-1 & 0+0-3 \\
3+0+0 & 0+0+2 & 0+0+6 \\
4+10+0 & 0+5+0 & 0+0+0 \\
\end{matrix} \right) \\
& \text{ }=\left( \begin{matrix}
5 & 1 & -3 \\
3 & 2 & 6 \\
14 & 5 & 0 \\
\end{matrix} \right) \\
\end{align}$
Hence, this is the required solution
Option ‘A’ is correct
Note: Here, we may go wrong with the multiplication of 3\times 3 matrices and can exchange rows to columns or columns to rows. We have to keep in mind that we have to multiply the row of Matrix A by the column of matrix B.
Formula Used: A matrix is denoted by $A=\left[ {{a}_{ij}} \right]$ where $i$ represents rows and $j$ represents columns
Then, the multiplication of two $3\times 3$ matrices is as follows:
If $A=\left[ {{a}_{ij}} \right]$ is an $m\times n$ matrix and $B=\left[ {{b}_{ij}} \right]$ is $n\times p$ matrix, the product $[AB]$ becomes an $m\times p$ matrix
Consider matrix
$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
and matrix
$B=\left( \begin{matrix}
{{b}_{11}} & {{b}_{12}} & {{b}_{13}} \\
{{b}_{21}} & {{b}_{22}} & {{b}_{23}} \\
{{b}_{31}} & {{b}_{32}} & {{b}_{33}} \\
\end{matrix} \right)$
Then the product of these two matrices is calculated as
$\left( \begin{matrix}
{{a}_{11}}{{b}_{11}}+{{a}_{12}}{{b}_{21}}+{{a}_{13}}{{b}_{31}} & {{a}_{11}}{{b}_{12}}+{{a}_{12}}{{b}_{22}}+{{a}_{13}}{{b}_{32}} & {{a}_{11}}{{b}_{13}}+{{a}_{12}}{{b}_{23}}+{{a}_{13}}{{b}_{33}} \\
{{a}_{21}}{{b}_{11}}+{{a}_{22}}{{b}_{21}}+{{a}_{23}}{{b}_{31}} & {{a}_{21}}{{b}_{12}}+{{a}_{22}}{{b}_{22}}+{{a}_{23}}{{b}_{32}} & {{a}_{21}}{{b}_{13}}+{{a}_{22}}{{b}_{23}}+{{a}_{23}}{{b}_{33}} \\
{{a}_{31}}{{b}_{11}}+{{a}_{32}}{{b}_{21}}+{{a}_{33}}{{b}_{31}} & {{a}_{31}}{{b}_{12}}+{{a}_{32}}{{b}_{22}}+{{a}_{33}}{{b}_{32}} & {{a}_{31}}{{b}_{13}}+{{a}_{32}}{{b}_{23}}+{{a}_{33}}{{b}_{33}} \\
\end{matrix} \right)$
Complete step by step solution: The given two matrices are
$A=\left( \begin{matrix}
1 & 2 & -1 \\
3 & 0 & 2 \\
4 & 5 & 0 \\
\end{matrix} \right)$
and
$B=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3 \\
\end{matrix} \right)$
For finding the product of these two matrices we have to multiply each element of row of Matrix A to each element of column of Matrix B.
$\begin{align}
& AB=\left( \begin{matrix}
1\times 1+2\times 2+(-1)(0) & 1\times 0+2\times 1+(-1)(1) & 1\times 0+2\times 0+(-1)(3) \\
3\times 1+0\times 2+2\times 0 & 3\times 0+0\times 1+2\times 1 & 3\times 0+0\times 0+2\times 3 \\
4\times 1+5\times 2+0\times 0 & 4\times 0+5\times 1+0\times 0 & 4\times 0+5\times 0+0\times 3 \\
\end{matrix} \right) \\
& \text{ }=\left( \begin{matrix}
1+4+0 & 0+2-1 & 0+0-3 \\
3+0+0 & 0+0+2 & 0+0+6 \\
4+10+0 & 0+5+0 & 0+0+0 \\
\end{matrix} \right) \\
& \text{ }=\left( \begin{matrix}
5 & 1 & -3 \\
3 & 2 & 6 \\
14 & 5 & 0 \\
\end{matrix} \right) \\
\end{align}$
Hence, this is the required solution
Option ‘A’ is correct
Note: Here, we may go wrong with the multiplication of 3\times 3 matrices and can exchange rows to columns or columns to rows. We have to keep in mind that we have to multiply the row of Matrix A by the column of matrix B.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
