
If \[ABC\] is a triangle, then find the equivalent expression for \[{\left( {a - b} \right)^2}{\cos ^2}\dfrac{C}{2} + {\left( {a + b} \right)^2}{\sin ^2}\dfrac{C}{2}\].
A. \[{a^2}\]
B. \[{b^2}\]
C. \[{c^2}\]
D. None of these
Answer
162.3k+ views
Hint: We will apply the square identity in the given expression and simplify it. After that, we will apply cosine law.
Formula used:
Algebraical Identity:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Cosine laws:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
The given expression is \[{\left( {a - b} \right)^2}{\cos ^2}\dfrac{C}{2} + {\left( {a + b} \right)^2}{\sin ^2}\dfrac{C}{2}\].
Apply the algebraical identity
\[ = \left( {{a^2} + {b^2} - 2ab} \right){\cos ^2}\dfrac{C}{2} + \left( {{a^2} + {b^2} + 2ab} \right){\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right){\cos ^2}\dfrac{C}{2} - 2ab{\cos ^2}\dfrac{C}{2} + \left( {{a^2} + {b^2}} \right){\sin ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right)\left( {{{\cos }^2}\dfrac{C}{2} + {{\sin }^2}\dfrac{C}{2}} \right) - 2ab{\cos ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
Now applying trigonometry identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]:
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 - 2ab{\cos ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 + 2ab\left( {{{\sin }^2}\dfrac{C}{2} - {{\cos }^2}\dfrac{C}{2}} \right)\]
Apply the formula \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \]
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 + 2ab\left( { - \cos C} \right)\]
\[ = {a^2} + {b^2} - 2ab\cos C\]
Applying cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
\[ = {c^2}\]
Hence option C is the correct option.
Additional information:
There are some few laws on triangle. The sine laws are
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Note: Students often do a mistake to apply the formula for \[\cos 2\theta \]. They apply a wrong formula that is \[{\sin ^2}\theta - {\cos ^2}\theta = \cos 2\theta \]. The correct formula is \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \].
Formula used:
Algebraical Identity:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Cosine laws:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
The given expression is \[{\left( {a - b} \right)^2}{\cos ^2}\dfrac{C}{2} + {\left( {a + b} \right)^2}{\sin ^2}\dfrac{C}{2}\].
Apply the algebraical identity
\[ = \left( {{a^2} + {b^2} - 2ab} \right){\cos ^2}\dfrac{C}{2} + \left( {{a^2} + {b^2} + 2ab} \right){\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right){\cos ^2}\dfrac{C}{2} - 2ab{\cos ^2}\dfrac{C}{2} + \left( {{a^2} + {b^2}} \right){\sin ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right)\left( {{{\cos }^2}\dfrac{C}{2} + {{\sin }^2}\dfrac{C}{2}} \right) - 2ab{\cos ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
Now applying trigonometry identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]:
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 - 2ab{\cos ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 + 2ab\left( {{{\sin }^2}\dfrac{C}{2} - {{\cos }^2}\dfrac{C}{2}} \right)\]
Apply the formula \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \]
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 + 2ab\left( { - \cos C} \right)\]
\[ = {a^2} + {b^2} - 2ab\cos C\]
Applying cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
\[ = {c^2}\]
Hence option C is the correct option.
Additional information:
There are some few laws on triangle. The sine laws are
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Note: Students often do a mistake to apply the formula for \[\cos 2\theta \]. They apply a wrong formula that is \[{\sin ^2}\theta - {\cos ^2}\theta = \cos 2\theta \]. The correct formula is \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

JEE Main 2024 Cut-off for NIT Surathkal

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
