
If \[ABC\] is a triangle, then find the equivalent expression for \[{\left( {a - b} \right)^2}{\cos ^2}\dfrac{C}{2} + {\left( {a + b} \right)^2}{\sin ^2}\dfrac{C}{2}\].
A. \[{a^2}\]
B. \[{b^2}\]
C. \[{c^2}\]
D. None of these
Answer
233.1k+ views
Hint: We will apply the square identity in the given expression and simplify it. After that, we will apply cosine law.
Formula used:
Algebraical Identity:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Cosine laws:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
The given expression is \[{\left( {a - b} \right)^2}{\cos ^2}\dfrac{C}{2} + {\left( {a + b} \right)^2}{\sin ^2}\dfrac{C}{2}\].
Apply the algebraical identity
\[ = \left( {{a^2} + {b^2} - 2ab} \right){\cos ^2}\dfrac{C}{2} + \left( {{a^2} + {b^2} + 2ab} \right){\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right){\cos ^2}\dfrac{C}{2} - 2ab{\cos ^2}\dfrac{C}{2} + \left( {{a^2} + {b^2}} \right){\sin ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right)\left( {{{\cos }^2}\dfrac{C}{2} + {{\sin }^2}\dfrac{C}{2}} \right) - 2ab{\cos ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
Now applying trigonometry identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]:
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 - 2ab{\cos ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 + 2ab\left( {{{\sin }^2}\dfrac{C}{2} - {{\cos }^2}\dfrac{C}{2}} \right)\]
Apply the formula \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \]
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 + 2ab\left( { - \cos C} \right)\]
\[ = {a^2} + {b^2} - 2ab\cos C\]
Applying cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
\[ = {c^2}\]
Hence option C is the correct option.
Additional information:
There are some few laws on triangle. The sine laws are
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Note: Students often do a mistake to apply the formula for \[\cos 2\theta \]. They apply a wrong formula that is \[{\sin ^2}\theta - {\cos ^2}\theta = \cos 2\theta \]. The correct formula is \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \].
Formula used:
Algebraical Identity:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Cosine laws:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
The given expression is \[{\left( {a - b} \right)^2}{\cos ^2}\dfrac{C}{2} + {\left( {a + b} \right)^2}{\sin ^2}\dfrac{C}{2}\].
Apply the algebraical identity
\[ = \left( {{a^2} + {b^2} - 2ab} \right){\cos ^2}\dfrac{C}{2} + \left( {{a^2} + {b^2} + 2ab} \right){\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right){\cos ^2}\dfrac{C}{2} - 2ab{\cos ^2}\dfrac{C}{2} + \left( {{a^2} + {b^2}} \right){\sin ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right)\left( {{{\cos }^2}\dfrac{C}{2} + {{\sin }^2}\dfrac{C}{2}} \right) - 2ab{\cos ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
Now applying trigonometry identity \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]:
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 - 2ab{\cos ^2}\dfrac{C}{2} + 2ab{\sin ^2}\dfrac{C}{2}\]
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 + 2ab\left( {{{\sin }^2}\dfrac{C}{2} - {{\cos }^2}\dfrac{C}{2}} \right)\]
Apply the formula \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \]
\[ = \left( {{a^2} + {b^2}} \right) \cdot 1 + 2ab\left( { - \cos C} \right)\]
\[ = {a^2} + {b^2} - 2ab\cos C\]
Applying cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
\[ = {c^2}\]
Hence option C is the correct option.
Additional information:
There are some few laws on triangle. The sine laws are
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Note: Students often do a mistake to apply the formula for \[\cos 2\theta \]. They apply a wrong formula that is \[{\sin ^2}\theta - {\cos ^2}\theta = \cos 2\theta \]. The correct formula is \[{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta \].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

