
If ABC is a triangle, then find \[{a^2}\sin 2C + {c^2}\sin 2A\].
A. \[\Delta \]
B. \[2\Delta \]
C. \[3\Delta \]
D. \[4\Delta \]
Answer
216k+ views
Hint: We will apply the double angle formula of sine to simplify the given expression. Then we will use the sine law, cosine law, and area of oblique triangle respectively to get the desired result.
Formula Used:
Double angle formula of sine:
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Area of oblique triangle:
\[\Delta = \dfrac{1}{2}ab\sin C\]
\[\Delta = \dfrac{1}{2}bc\sin A\]
\[\Delta = \dfrac{1}{2}ac\sin B\]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is
\[{a^2}\sin 2C + {c^2}\sin 2A\]
Apply double angle formula \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = {a^2}2\sin C\cos C + {c^2}2\sin A\cos A\]
\[ = 2{a^2}\sin C\cos C + 2{c^2}\sin A\cos A\] …(i)
The sine law is
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
This implies \[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute \[\sin A = ak\] and \[\sin C = ck\] in expression (i)
\[ = 2{a^2} \cdot ck\cos C + 2{c^2} \cdot ak\cos A\]
\[ = 2ack\left( {a\cos C + c\cos A} \right)\]
Apply cosine law:
\[ = 2ack\left( {a \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} + c \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}} \right)\]
\[ = 2ack\left( {\dfrac{{{a^2} + {b^2} - {c^2}}}{{2b}} + \dfrac{{{b^2} + {c^2} - {a^2}}}{{2b}}} \right)\]
\[ = 2ack\left( {\dfrac{{{a^2} + {b^2} - {c^2} + {b^2} + {c^2} - {a^2}}}{{2b}}} \right)\]
\[ = 2ack\left( {\dfrac{{2{b^2}}}{{2b}}} \right)\]
\[ = 2abck\]
Putting \[\dfrac{{\sin A}}{a} = k\]
\[ = 2abc \cdot \dfrac{{\sin A}}{a}\]
\[ = 2bc\sin A\]
\[ = 4 \cdot \dfrac{1}{2}bc\sin A\]
Apply the formula of area of oblique triangle \[\Delta = \dfrac{1}{2}bc\sin A\]
\[ = 4\Delta \]
Hence option D is the correct option.
Note: Students often make a mistake to apply the area of a triangle. They use a wrong formula that is \[\dfrac{1}{2}bc\]. But \[\dfrac{1}{2}bc\] is the formula of a right-angled triangle. The formula of the area of an oblique triangle is \[\dfrac{1}{2}bc\sin A\].
Formula Used:
Double angle formula of sine:
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Area of oblique triangle:
\[\Delta = \dfrac{1}{2}ab\sin C\]
\[\Delta = \dfrac{1}{2}bc\sin A\]
\[\Delta = \dfrac{1}{2}ac\sin B\]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is
\[{a^2}\sin 2C + {c^2}\sin 2A\]
Apply double angle formula \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = {a^2}2\sin C\cos C + {c^2}2\sin A\cos A\]
\[ = 2{a^2}\sin C\cos C + 2{c^2}\sin A\cos A\] …(i)
The sine law is
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
This implies \[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute \[\sin A = ak\] and \[\sin C = ck\] in expression (i)
\[ = 2{a^2} \cdot ck\cos C + 2{c^2} \cdot ak\cos A\]
\[ = 2ack\left( {a\cos C + c\cos A} \right)\]
Apply cosine law:
\[ = 2ack\left( {a \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} + c \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}} \right)\]
\[ = 2ack\left( {\dfrac{{{a^2} + {b^2} - {c^2}}}{{2b}} + \dfrac{{{b^2} + {c^2} - {a^2}}}{{2b}}} \right)\]
\[ = 2ack\left( {\dfrac{{{a^2} + {b^2} - {c^2} + {b^2} + {c^2} - {a^2}}}{{2b}}} \right)\]
\[ = 2ack\left( {\dfrac{{2{b^2}}}{{2b}}} \right)\]
\[ = 2abck\]
Putting \[\dfrac{{\sin A}}{a} = k\]
\[ = 2abc \cdot \dfrac{{\sin A}}{a}\]
\[ = 2bc\sin A\]
\[ = 4 \cdot \dfrac{1}{2}bc\sin A\]
Apply the formula of area of oblique triangle \[\Delta = \dfrac{1}{2}bc\sin A\]
\[ = 4\Delta \]
Hence option D is the correct option.
Note: Students often make a mistake to apply the area of a triangle. They use a wrong formula that is \[\dfrac{1}{2}bc\]. But \[\dfrac{1}{2}bc\] is the formula of a right-angled triangle. The formula of the area of an oblique triangle is \[\dfrac{1}{2}bc\sin A\].
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

