
If ABC is a triangle, then find \[{a^2}\sin 2C + {c^2}\sin 2A\].
A. \[\Delta \]
B. \[2\Delta \]
C. \[3\Delta \]
D. \[4\Delta \]
Answer
164.7k+ views
Hint: We will apply the double angle formula of sine to simplify the given expression. Then we will use the sine law, cosine law, and area of oblique triangle respectively to get the desired result.
Formula Used:
Double angle formula of sine:
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Area of oblique triangle:
\[\Delta = \dfrac{1}{2}ab\sin C\]
\[\Delta = \dfrac{1}{2}bc\sin A\]
\[\Delta = \dfrac{1}{2}ac\sin B\]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is
\[{a^2}\sin 2C + {c^2}\sin 2A\]
Apply double angle formula \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = {a^2}2\sin C\cos C + {c^2}2\sin A\cos A\]
\[ = 2{a^2}\sin C\cos C + 2{c^2}\sin A\cos A\] …(i)
The sine law is
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
This implies \[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute \[\sin A = ak\] and \[\sin C = ck\] in expression (i)
\[ = 2{a^2} \cdot ck\cos C + 2{c^2} \cdot ak\cos A\]
\[ = 2ack\left( {a\cos C + c\cos A} \right)\]
Apply cosine law:
\[ = 2ack\left( {a \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} + c \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}} \right)\]
\[ = 2ack\left( {\dfrac{{{a^2} + {b^2} - {c^2}}}{{2b}} + \dfrac{{{b^2} + {c^2} - {a^2}}}{{2b}}} \right)\]
\[ = 2ack\left( {\dfrac{{{a^2} + {b^2} - {c^2} + {b^2} + {c^2} - {a^2}}}{{2b}}} \right)\]
\[ = 2ack\left( {\dfrac{{2{b^2}}}{{2b}}} \right)\]
\[ = 2abck\]
Putting \[\dfrac{{\sin A}}{a} = k\]
\[ = 2abc \cdot \dfrac{{\sin A}}{a}\]
\[ = 2bc\sin A\]
\[ = 4 \cdot \dfrac{1}{2}bc\sin A\]
Apply the formula of area of oblique triangle \[\Delta = \dfrac{1}{2}bc\sin A\]
\[ = 4\Delta \]
Hence option D is the correct option.
Note: Students often make a mistake to apply the area of a triangle. They use a wrong formula that is \[\dfrac{1}{2}bc\]. But \[\dfrac{1}{2}bc\] is the formula of a right-angled triangle. The formula of the area of an oblique triangle is \[\dfrac{1}{2}bc\sin A\].
Formula Used:
Double angle formula of sine:
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Area of oblique triangle:
\[\Delta = \dfrac{1}{2}ab\sin C\]
\[\Delta = \dfrac{1}{2}bc\sin A\]
\[\Delta = \dfrac{1}{2}ac\sin B\]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is
\[{a^2}\sin 2C + {c^2}\sin 2A\]
Apply double angle formula \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = {a^2}2\sin C\cos C + {c^2}2\sin A\cos A\]
\[ = 2{a^2}\sin C\cos C + 2{c^2}\sin A\cos A\] …(i)
The sine law is
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
This implies \[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute \[\sin A = ak\] and \[\sin C = ck\] in expression (i)
\[ = 2{a^2} \cdot ck\cos C + 2{c^2} \cdot ak\cos A\]
\[ = 2ack\left( {a\cos C + c\cos A} \right)\]
Apply cosine law:
\[ = 2ack\left( {a \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}} + c \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}} \right)\]
\[ = 2ack\left( {\dfrac{{{a^2} + {b^2} - {c^2}}}{{2b}} + \dfrac{{{b^2} + {c^2} - {a^2}}}{{2b}}} \right)\]
\[ = 2ack\left( {\dfrac{{{a^2} + {b^2} - {c^2} + {b^2} + {c^2} - {a^2}}}{{2b}}} \right)\]
\[ = 2ack\left( {\dfrac{{2{b^2}}}{{2b}}} \right)\]
\[ = 2abck\]
Putting \[\dfrac{{\sin A}}{a} = k\]
\[ = 2abc \cdot \dfrac{{\sin A}}{a}\]
\[ = 2bc\sin A\]
\[ = 4 \cdot \dfrac{1}{2}bc\sin A\]
Apply the formula of area of oblique triangle \[\Delta = \dfrac{1}{2}bc\sin A\]
\[ = 4\Delta \]
Hence option D is the correct option.
Note: Students often make a mistake to apply the area of a triangle. They use a wrong formula that is \[\dfrac{1}{2}bc\]. But \[\dfrac{1}{2}bc\] is the formula of a right-angled triangle. The formula of the area of an oblique triangle is \[\dfrac{1}{2}bc\sin A\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
