
If $a,b,c$ are the sides and $A,B,C$ are the angles of a triangle $ABC$, then $\tan \dfrac{A}{2}$ is equal to
A. $\sqrt{\dfrac{(s-c)(s-a)}{s(s-b)}}$
B. $\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$
C. $\sqrt{\dfrac{(s-a)(s-b)}{s(s-c)}}$
D. $\sqrt{\dfrac{(s-a)s}{(s-b)(s-c)}}$
Answer
162.9k+ views
Hint: To solve this question, we will use the formula of half angle of tan in terms of the semi perimeter of the triangle.
We will use the formula of semi perimeter of triangle, cosine rule for the angle $A$ that is$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$and trigonometric formulas. We will calculate the value of the half angles for sine and cosine and then divide them to get the value of $\tan \dfrac{A}{2}$as we know$\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$.
Formula Used: The half angle formulas are:
$\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
\end{align}$
The semi perimeter of the triangle is:
$\begin{align}
& s=\dfrac{a+b+c}{2} \\
& 2s=a+b+c \\
\end{align}$
Complete step by step solution: We are given a triangle $ABC$ having sides $a,b,c$ and angles $A,B,C$ and we have to determine the value of $\tan \dfrac{A}{2}$.
We will use the formula of tan $\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$ to calculate its value.
First we will calculate the value of $\sin \dfrac{A}{2}$ and $\cos \dfrac{A}{2}$.
To calculate the value of $\sin \dfrac{A}{2}$, we will take ${{\sin }^{2}}\dfrac{A}{2}$. Now we can write ${{\sin }^{2}}\dfrac{A}{2}$ as,
${{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2}$
Using cosine rule we will substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& =\dfrac{1-\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{{{a}^{2}}-{{b}^{2}}-{{c}^{2}}+2bc}{4bc} \\
& =\dfrac{{{a}^{2}}-{{(b-c)}^{2}}}{4bc}
\end{align}\]
We will now use the formula ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$,
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(a-(b-c))(a+b-c)}{4bc} \\
& =\dfrac{(a-b+c)(a+b-c)}{4bc} \\
& =\dfrac{(a+b+c-2b)(a+b+c-2c)}{4bc}
\end{align}\]
We will now use the formula of the semi perimeter of the triangle and substitute it in the above equation.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(2s-2b)(2s-2c)}{4bc} \\
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{4(s-b)(s-c)}{4bc} \\
& \sin \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{bc}}
\end{align}\]
We will now find the value of $\cos \dfrac{A}{2}$ . We will take ${{\cos }^{2}}\dfrac{A}{2}$ and write it as ${{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}$ and substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$ .
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
& =\dfrac{1+\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{2bc+{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{{{(b+c)}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{(b+c+a)(b+c-a)}{4bc} \\
& =\dfrac{(b+c+a)(b+c+a-2a)}{4bc}
\end{align}\]
We will now substitute the formula of the semi perimeter of the triangle in the equation.
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{2s(2s-2a)}{4bc} \\
& \cos \dfrac{A}{2}=\sqrt{\dfrac{4s(s-a)}{4bc}} \\
& \cos \dfrac{A}{2}=\dfrac{\sqrt{s(s-a)}}{bc}
\end{align}\]
We will now find the value of $\tan \dfrac{A}{2}$.
$\begin{align}
& \tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}} \\
& =\dfrac{\sqrt{\dfrac{(s-b)(s-c)}{bc}}}{\sqrt{\dfrac{s(s-a)}{bc}}} \\
& =\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}
\end{align}$
The value of $\tan \dfrac{A}{2}$ for the triangle $ABC$ is $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$ when $a,b,c$ are the sides and $A,B,C$ are the angles. Hence the correct option is (B).
Note: This $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$is the formula of half angle of tan and we could have directly chosen it from the options.
We will use the formula of semi perimeter of triangle, cosine rule for the angle $A$ that is$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$and trigonometric formulas. We will calculate the value of the half angles for sine and cosine and then divide them to get the value of $\tan \dfrac{A}{2}$as we know$\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$.
Formula Used: The half angle formulas are:
$\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
\end{align}$
The semi perimeter of the triangle is:
$\begin{align}
& s=\dfrac{a+b+c}{2} \\
& 2s=a+b+c \\
\end{align}$
Complete step by step solution: We are given a triangle $ABC$ having sides $a,b,c$ and angles $A,B,C$ and we have to determine the value of $\tan \dfrac{A}{2}$.
We will use the formula of tan $\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$ to calculate its value.
First we will calculate the value of $\sin \dfrac{A}{2}$ and $\cos \dfrac{A}{2}$.
To calculate the value of $\sin \dfrac{A}{2}$, we will take ${{\sin }^{2}}\dfrac{A}{2}$. Now we can write ${{\sin }^{2}}\dfrac{A}{2}$ as,
${{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2}$
Using cosine rule we will substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& =\dfrac{1-\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{{{a}^{2}}-{{b}^{2}}-{{c}^{2}}+2bc}{4bc} \\
& =\dfrac{{{a}^{2}}-{{(b-c)}^{2}}}{4bc}
\end{align}\]
We will now use the formula ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$,
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(a-(b-c))(a+b-c)}{4bc} \\
& =\dfrac{(a-b+c)(a+b-c)}{4bc} \\
& =\dfrac{(a+b+c-2b)(a+b+c-2c)}{4bc}
\end{align}\]
We will now use the formula of the semi perimeter of the triangle and substitute it in the above equation.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(2s-2b)(2s-2c)}{4bc} \\
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{4(s-b)(s-c)}{4bc} \\
& \sin \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{bc}}
\end{align}\]
We will now find the value of $\cos \dfrac{A}{2}$ . We will take ${{\cos }^{2}}\dfrac{A}{2}$ and write it as ${{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}$ and substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$ .
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
& =\dfrac{1+\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{2bc+{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{{{(b+c)}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{(b+c+a)(b+c-a)}{4bc} \\
& =\dfrac{(b+c+a)(b+c+a-2a)}{4bc}
\end{align}\]
We will now substitute the formula of the semi perimeter of the triangle in the equation.
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{2s(2s-2a)}{4bc} \\
& \cos \dfrac{A}{2}=\sqrt{\dfrac{4s(s-a)}{4bc}} \\
& \cos \dfrac{A}{2}=\dfrac{\sqrt{s(s-a)}}{bc}
\end{align}\]
We will now find the value of $\tan \dfrac{A}{2}$.
$\begin{align}
& \tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}} \\
& =\dfrac{\sqrt{\dfrac{(s-b)(s-c)}{bc}}}{\sqrt{\dfrac{s(s-a)}{bc}}} \\
& =\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}
\end{align}$
The value of $\tan \dfrac{A}{2}$ for the triangle $ABC$ is $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$ when $a,b,c$ are the sides and $A,B,C$ are the angles. Hence the correct option is (B).
Note: This $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$is the formula of half angle of tan and we could have directly chosen it from the options.
Recently Updated Pages
How To Find Mean Deviation For Ungrouped Data

Difference Between Molecule and Compound: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Difference Between Area and Surface Area: JEE Main 2024

Difference Between Work and Power: JEE Main 2024

Difference Between Acetic Acid and Glacial Acetic Acid: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
