
If $a,b,c$ are the sides and $A,B,C$ are the angles of a triangle $ABC$, then $\tan \dfrac{A}{2}$ is equal to
A. $\sqrt{\dfrac{(s-c)(s-a)}{s(s-b)}}$
B. $\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$
C. $\sqrt{\dfrac{(s-a)(s-b)}{s(s-c)}}$
D. $\sqrt{\dfrac{(s-a)s}{(s-b)(s-c)}}$
Answer
163.8k+ views
Hint: To solve this question, we will use the formula of half angle of tan in terms of the semi perimeter of the triangle.
We will use the formula of semi perimeter of triangle, cosine rule for the angle $A$ that is$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$and trigonometric formulas. We will calculate the value of the half angles for sine and cosine and then divide them to get the value of $\tan \dfrac{A}{2}$as we know$\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$.
Formula Used: The half angle formulas are:
$\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
\end{align}$
The semi perimeter of the triangle is:
$\begin{align}
& s=\dfrac{a+b+c}{2} \\
& 2s=a+b+c \\
\end{align}$
Complete step by step solution: We are given a triangle $ABC$ having sides $a,b,c$ and angles $A,B,C$ and we have to determine the value of $\tan \dfrac{A}{2}$.
We will use the formula of tan $\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$ to calculate its value.
First we will calculate the value of $\sin \dfrac{A}{2}$ and $\cos \dfrac{A}{2}$.
To calculate the value of $\sin \dfrac{A}{2}$, we will take ${{\sin }^{2}}\dfrac{A}{2}$. Now we can write ${{\sin }^{2}}\dfrac{A}{2}$ as,
${{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2}$
Using cosine rule we will substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& =\dfrac{1-\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{{{a}^{2}}-{{b}^{2}}-{{c}^{2}}+2bc}{4bc} \\
& =\dfrac{{{a}^{2}}-{{(b-c)}^{2}}}{4bc}
\end{align}\]
We will now use the formula ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$,
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(a-(b-c))(a+b-c)}{4bc} \\
& =\dfrac{(a-b+c)(a+b-c)}{4bc} \\
& =\dfrac{(a+b+c-2b)(a+b+c-2c)}{4bc}
\end{align}\]
We will now use the formula of the semi perimeter of the triangle and substitute it in the above equation.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(2s-2b)(2s-2c)}{4bc} \\
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{4(s-b)(s-c)}{4bc} \\
& \sin \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{bc}}
\end{align}\]
We will now find the value of $\cos \dfrac{A}{2}$ . We will take ${{\cos }^{2}}\dfrac{A}{2}$ and write it as ${{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}$ and substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$ .
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
& =\dfrac{1+\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{2bc+{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{{{(b+c)}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{(b+c+a)(b+c-a)}{4bc} \\
& =\dfrac{(b+c+a)(b+c+a-2a)}{4bc}
\end{align}\]
We will now substitute the formula of the semi perimeter of the triangle in the equation.
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{2s(2s-2a)}{4bc} \\
& \cos \dfrac{A}{2}=\sqrt{\dfrac{4s(s-a)}{4bc}} \\
& \cos \dfrac{A}{2}=\dfrac{\sqrt{s(s-a)}}{bc}
\end{align}\]
We will now find the value of $\tan \dfrac{A}{2}$.
$\begin{align}
& \tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}} \\
& =\dfrac{\sqrt{\dfrac{(s-b)(s-c)}{bc}}}{\sqrt{\dfrac{s(s-a)}{bc}}} \\
& =\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}
\end{align}$
The value of $\tan \dfrac{A}{2}$ for the triangle $ABC$ is $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$ when $a,b,c$ are the sides and $A,B,C$ are the angles. Hence the correct option is (B).
Note: This $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$is the formula of half angle of tan and we could have directly chosen it from the options.
We will use the formula of semi perimeter of triangle, cosine rule for the angle $A$ that is$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$and trigonometric formulas. We will calculate the value of the half angles for sine and cosine and then divide them to get the value of $\tan \dfrac{A}{2}$as we know$\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$.
Formula Used: The half angle formulas are:
$\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
\end{align}$
The semi perimeter of the triangle is:
$\begin{align}
& s=\dfrac{a+b+c}{2} \\
& 2s=a+b+c \\
\end{align}$
Complete step by step solution: We are given a triangle $ABC$ having sides $a,b,c$ and angles $A,B,C$ and we have to determine the value of $\tan \dfrac{A}{2}$.
We will use the formula of tan $\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$ to calculate its value.
First we will calculate the value of $\sin \dfrac{A}{2}$ and $\cos \dfrac{A}{2}$.
To calculate the value of $\sin \dfrac{A}{2}$, we will take ${{\sin }^{2}}\dfrac{A}{2}$. Now we can write ${{\sin }^{2}}\dfrac{A}{2}$ as,
${{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2}$
Using cosine rule we will substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& =\dfrac{1-\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{{{a}^{2}}-{{b}^{2}}-{{c}^{2}}+2bc}{4bc} \\
& =\dfrac{{{a}^{2}}-{{(b-c)}^{2}}}{4bc}
\end{align}\]
We will now use the formula ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$,
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(a-(b-c))(a+b-c)}{4bc} \\
& =\dfrac{(a-b+c)(a+b-c)}{4bc} \\
& =\dfrac{(a+b+c-2b)(a+b+c-2c)}{4bc}
\end{align}\]
We will now use the formula of the semi perimeter of the triangle and substitute it in the above equation.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(2s-2b)(2s-2c)}{4bc} \\
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{4(s-b)(s-c)}{4bc} \\
& \sin \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{bc}}
\end{align}\]
We will now find the value of $\cos \dfrac{A}{2}$ . We will take ${{\cos }^{2}}\dfrac{A}{2}$ and write it as ${{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}$ and substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$ .
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
& =\dfrac{1+\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{2bc+{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{{{(b+c)}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{(b+c+a)(b+c-a)}{4bc} \\
& =\dfrac{(b+c+a)(b+c+a-2a)}{4bc}
\end{align}\]
We will now substitute the formula of the semi perimeter of the triangle in the equation.
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{2s(2s-2a)}{4bc} \\
& \cos \dfrac{A}{2}=\sqrt{\dfrac{4s(s-a)}{4bc}} \\
& \cos \dfrac{A}{2}=\dfrac{\sqrt{s(s-a)}}{bc}
\end{align}\]
We will now find the value of $\tan \dfrac{A}{2}$.
$\begin{align}
& \tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}} \\
& =\dfrac{\sqrt{\dfrac{(s-b)(s-c)}{bc}}}{\sqrt{\dfrac{s(s-a)}{bc}}} \\
& =\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}
\end{align}$
The value of $\tan \dfrac{A}{2}$ for the triangle $ABC$ is $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$ when $a,b,c$ are the sides and $A,B,C$ are the angles. Hence the correct option is (B).
Note: This $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$is the formula of half angle of tan and we could have directly chosen it from the options.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
