
If $a,b,c$ are the sides and $A,B,C$ are the angles of a triangle $ABC$, then $\tan \dfrac{A}{2}$ is equal to
A. $\sqrt{\dfrac{(s-c)(s-a)}{s(s-b)}}$
B. $\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$
C. $\sqrt{\dfrac{(s-a)(s-b)}{s(s-c)}}$
D. $\sqrt{\dfrac{(s-a)s}{(s-b)(s-c)}}$
Answer
218.7k+ views
Hint: To solve this question, we will use the formula of half angle of tan in terms of the semi perimeter of the triangle.
We will use the formula of semi perimeter of triangle, cosine rule for the angle $A$ that is$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$and trigonometric formulas. We will calculate the value of the half angles for sine and cosine and then divide them to get the value of $\tan \dfrac{A}{2}$as we know$\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$.
Formula Used: The half angle formulas are:
$\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
\end{align}$
The semi perimeter of the triangle is:
$\begin{align}
& s=\dfrac{a+b+c}{2} \\
& 2s=a+b+c \\
\end{align}$
Complete step by step solution: We are given a triangle $ABC$ having sides $a,b,c$ and angles $A,B,C$ and we have to determine the value of $\tan \dfrac{A}{2}$.
We will use the formula of tan $\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$ to calculate its value.
First we will calculate the value of $\sin \dfrac{A}{2}$ and $\cos \dfrac{A}{2}$.
To calculate the value of $\sin \dfrac{A}{2}$, we will take ${{\sin }^{2}}\dfrac{A}{2}$. Now we can write ${{\sin }^{2}}\dfrac{A}{2}$ as,
${{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2}$
Using cosine rule we will substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& =\dfrac{1-\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{{{a}^{2}}-{{b}^{2}}-{{c}^{2}}+2bc}{4bc} \\
& =\dfrac{{{a}^{2}}-{{(b-c)}^{2}}}{4bc}
\end{align}\]
We will now use the formula ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$,
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(a-(b-c))(a+b-c)}{4bc} \\
& =\dfrac{(a-b+c)(a+b-c)}{4bc} \\
& =\dfrac{(a+b+c-2b)(a+b+c-2c)}{4bc}
\end{align}\]
We will now use the formula of the semi perimeter of the triangle and substitute it in the above equation.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(2s-2b)(2s-2c)}{4bc} \\
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{4(s-b)(s-c)}{4bc} \\
& \sin \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{bc}}
\end{align}\]
We will now find the value of $\cos \dfrac{A}{2}$ . We will take ${{\cos }^{2}}\dfrac{A}{2}$ and write it as ${{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}$ and substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$ .
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
& =\dfrac{1+\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{2bc+{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{{{(b+c)}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{(b+c+a)(b+c-a)}{4bc} \\
& =\dfrac{(b+c+a)(b+c+a-2a)}{4bc}
\end{align}\]
We will now substitute the formula of the semi perimeter of the triangle in the equation.
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{2s(2s-2a)}{4bc} \\
& \cos \dfrac{A}{2}=\sqrt{\dfrac{4s(s-a)}{4bc}} \\
& \cos \dfrac{A}{2}=\dfrac{\sqrt{s(s-a)}}{bc}
\end{align}\]
We will now find the value of $\tan \dfrac{A}{2}$.
$\begin{align}
& \tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}} \\
& =\dfrac{\sqrt{\dfrac{(s-b)(s-c)}{bc}}}{\sqrt{\dfrac{s(s-a)}{bc}}} \\
& =\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}
\end{align}$
The value of $\tan \dfrac{A}{2}$ for the triangle $ABC$ is $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$ when $a,b,c$ are the sides and $A,B,C$ are the angles. Hence the correct option is (B).
Note: This $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$is the formula of half angle of tan and we could have directly chosen it from the options.
We will use the formula of semi perimeter of triangle, cosine rule for the angle $A$ that is$\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$and trigonometric formulas. We will calculate the value of the half angles for sine and cosine and then divide them to get the value of $\tan \dfrac{A}{2}$as we know$\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$.
Formula Used: The half angle formulas are:
$\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
\end{align}$
The semi perimeter of the triangle is:
$\begin{align}
& s=\dfrac{a+b+c}{2} \\
& 2s=a+b+c \\
\end{align}$
Complete step by step solution: We are given a triangle $ABC$ having sides $a,b,c$ and angles $A,B,C$ and we have to determine the value of $\tan \dfrac{A}{2}$.
We will use the formula of tan $\tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}}$ to calculate its value.
First we will calculate the value of $\sin \dfrac{A}{2}$ and $\cos \dfrac{A}{2}$.
To calculate the value of $\sin \dfrac{A}{2}$, we will take ${{\sin }^{2}}\dfrac{A}{2}$. Now we can write ${{\sin }^{2}}\dfrac{A}{2}$ as,
${{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2}$
Using cosine rule we will substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{1-\cos A}{2} \\
& =\dfrac{1-\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{{{a}^{2}}-{{b}^{2}}-{{c}^{2}}+2bc}{4bc} \\
& =\dfrac{{{a}^{2}}-{{(b-c)}^{2}}}{4bc}
\end{align}\]
We will now use the formula ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$,
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(a-(b-c))(a+b-c)}{4bc} \\
& =\dfrac{(a-b+c)(a+b-c)}{4bc} \\
& =\dfrac{(a+b+c-2b)(a+b+c-2c)}{4bc}
\end{align}\]
We will now use the formula of the semi perimeter of the triangle and substitute it in the above equation.
\[\begin{align}
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{(2s-2b)(2s-2c)}{4bc} \\
& {{\sin }^{2}}\dfrac{A}{2}=\dfrac{4(s-b)(s-c)}{4bc} \\
& \sin \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{bc}}
\end{align}\]
We will now find the value of $\cos \dfrac{A}{2}$ . We will take ${{\cos }^{2}}\dfrac{A}{2}$ and write it as ${{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}$ and substitute the value $\cos A=\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}$ .
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2} \\
& =\dfrac{1+\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}}{2} \\
& =\dfrac{2bc+{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{{{(b+c)}^{2}}-{{a}^{2}}}{4bc} \\
& =\dfrac{(b+c+a)(b+c-a)}{4bc} \\
& =\dfrac{(b+c+a)(b+c+a-2a)}{4bc}
\end{align}\]
We will now substitute the formula of the semi perimeter of the triangle in the equation.
\[\begin{align}
& {{\cos }^{2}}\dfrac{A}{2}=\dfrac{2s(2s-2a)}{4bc} \\
& \cos \dfrac{A}{2}=\sqrt{\dfrac{4s(s-a)}{4bc}} \\
& \cos \dfrac{A}{2}=\dfrac{\sqrt{s(s-a)}}{bc}
\end{align}\]
We will now find the value of $\tan \dfrac{A}{2}$.
$\begin{align}
& \tan \dfrac{A}{2}=\dfrac{\sin \dfrac{A}{2}}{\cos \dfrac{A}{2}} \\
& =\dfrac{\sqrt{\dfrac{(s-b)(s-c)}{bc}}}{\sqrt{\dfrac{s(s-a)}{bc}}} \\
& =\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}
\end{align}$
The value of $\tan \dfrac{A}{2}$ for the triangle $ABC$ is $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$ when $a,b,c$ are the sides and $A,B,C$ are the angles. Hence the correct option is (B).
Note: This $\tan \dfrac{A}{2}=\sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$is the formula of half angle of tan and we could have directly chosen it from the options.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

