
If \[{a_1},{a_2},{a_3},...{a_n}\] are in the arithmetic progression and \[{a_1} = 0\]. Then what is the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\] ?
A. \[\left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\]
B. \[\dfrac{1}{{\left( {n - 2} \right)}}\]
C. \[\left( {n - 2} \right)\]
D. \[\left( {n + 2} \right)\]
Answer
164.1k+ views
Hint: First, use the given first term and find the common difference in the given arithmetic progression. Then use the common difference and calculate the values of all terms present in the arithmetic progression. In the end, substitute the values in the given expression and solve the expression to get the required answer.
Formula used:
The formula of the \[{n^{th}}\] term in an arithmetic progression: \[{a_n} = a + \left( {n - 1} \right)d\], where \[a\] is the first term and \[d\] is the common difference.
Formula of the common difference: \[d = {a_n} - {a_{n - 1}}\]
Complete step by step solution:
Given:
\[{a_1},{a_2},{a_3},...{a_n}\] are in the arithmetic progression and \[{a_1} = 0\].
Let’s calculate the common difference of the above arithmetic progression.
\[d = {a_2} - {a_1}\]
Since \[{a_1} = 0\].
So, \[{a_2} = d\]
Now apply the formula of the \[{n^{th}}\] term in an arithmetic progression.
We get,
\[{a_3} = {a_1} + 2d = 2d\]
\[{a_4} = {a_1} + 3d = 3d\]
And so on.
\[{a_{n - 1}} = {a_1} + \left( {n - 2} \right)d = \left( {n - 2} \right)d\]
\[{a_n} = {a_1} + \left( {n - 1} \right)d = \left( {n - 1} \right)d\]
Let \[V\] be the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\].
Then,
\[V = \left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\]
Substitute the values in the above equation.
\[V = \left( {\dfrac{{2d}}{d} + \dfrac{{3d}}{{2d}} + ... + \dfrac{{\left( {n - 1} \right)d}}{{\left( {n - 2} \right)d}}} \right) - d\left( {\dfrac{1}{d} + \dfrac{1}{{2d}} + ... + \dfrac{1}{{\left( {n - 3} \right)d}}} \right)\]
Simplify the above equation.
\[V = \left( {2 + \dfrac{3}{2} + ... + \dfrac{{\left( {n - 1} \right)}}{{\left( {n - 2} \right)}}} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {\left( {1 + 1} \right) + \left( {1 + \dfrac{1}{2}} \right) + ... + \left( {1 + \dfrac{1}{{\left( {n - 2} \right)}}} \right)} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {1 + 1 + 1 + ....\left( {n - 2} \right)times} \right) + \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}} + \dfrac{1}{{\left( {n - 2} \right)}}} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\]
Thus, the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\] is \[\left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\].
Hence the correct option is A.
Note: Students often do a common mistake that is they are using the formula for \[{n^{th}}\] term is \[{a_n} = a + nd\] which is a wrong formula. The correct formula is \[{a_n} = a + \left( {n - 1} \right)d\].
Formula used:
The formula of the \[{n^{th}}\] term in an arithmetic progression: \[{a_n} = a + \left( {n - 1} \right)d\], where \[a\] is the first term and \[d\] is the common difference.
Formula of the common difference: \[d = {a_n} - {a_{n - 1}}\]
Complete step by step solution:
Given:
\[{a_1},{a_2},{a_3},...{a_n}\] are in the arithmetic progression and \[{a_1} = 0\].
Let’s calculate the common difference of the above arithmetic progression.
\[d = {a_2} - {a_1}\]
Since \[{a_1} = 0\].
So, \[{a_2} = d\]
Now apply the formula of the \[{n^{th}}\] term in an arithmetic progression.
We get,
\[{a_3} = {a_1} + 2d = 2d\]
\[{a_4} = {a_1} + 3d = 3d\]
And so on.
\[{a_{n - 1}} = {a_1} + \left( {n - 2} \right)d = \left( {n - 2} \right)d\]
\[{a_n} = {a_1} + \left( {n - 1} \right)d = \left( {n - 1} \right)d\]
Let \[V\] be the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\].
Then,
\[V = \left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\]
Substitute the values in the above equation.
\[V = \left( {\dfrac{{2d}}{d} + \dfrac{{3d}}{{2d}} + ... + \dfrac{{\left( {n - 1} \right)d}}{{\left( {n - 2} \right)d}}} \right) - d\left( {\dfrac{1}{d} + \dfrac{1}{{2d}} + ... + \dfrac{1}{{\left( {n - 3} \right)d}}} \right)\]
Simplify the above equation.
\[V = \left( {2 + \dfrac{3}{2} + ... + \dfrac{{\left( {n - 1} \right)}}{{\left( {n - 2} \right)}}} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {\left( {1 + 1} \right) + \left( {1 + \dfrac{1}{2}} \right) + ... + \left( {1 + \dfrac{1}{{\left( {n - 2} \right)}}} \right)} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {1 + 1 + 1 + ....\left( {n - 2} \right)times} \right) + \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}} + \dfrac{1}{{\left( {n - 2} \right)}}} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\]
Thus, the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\] is \[\left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\].
Hence the correct option is A.
Note: Students often do a common mistake that is they are using the formula for \[{n^{th}}\] term is \[{a_n} = a + nd\] which is a wrong formula. The correct formula is \[{a_n} = a + \left( {n - 1} \right)d\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
