
If \[{a_1},{a_2},{a_3},...{a_n}\] are in the arithmetic progression and \[{a_1} = 0\]. Then what is the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\] ?
A. \[\left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\]
B. \[\dfrac{1}{{\left( {n - 2} \right)}}\]
C. \[\left( {n - 2} \right)\]
D. \[\left( {n + 2} \right)\]
Answer
233.1k+ views
Hint: First, use the given first term and find the common difference in the given arithmetic progression. Then use the common difference and calculate the values of all terms present in the arithmetic progression. In the end, substitute the values in the given expression and solve the expression to get the required answer.
Formula used:
The formula of the \[{n^{th}}\] term in an arithmetic progression: \[{a_n} = a + \left( {n - 1} \right)d\], where \[a\] is the first term and \[d\] is the common difference.
Formula of the common difference: \[d = {a_n} - {a_{n - 1}}\]
Complete step by step solution:
Given:
\[{a_1},{a_2},{a_3},...{a_n}\] are in the arithmetic progression and \[{a_1} = 0\].
Let’s calculate the common difference of the above arithmetic progression.
\[d = {a_2} - {a_1}\]
Since \[{a_1} = 0\].
So, \[{a_2} = d\]
Now apply the formula of the \[{n^{th}}\] term in an arithmetic progression.
We get,
\[{a_3} = {a_1} + 2d = 2d\]
\[{a_4} = {a_1} + 3d = 3d\]
And so on.
\[{a_{n - 1}} = {a_1} + \left( {n - 2} \right)d = \left( {n - 2} \right)d\]
\[{a_n} = {a_1} + \left( {n - 1} \right)d = \left( {n - 1} \right)d\]
Let \[V\] be the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\].
Then,
\[V = \left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\]
Substitute the values in the above equation.
\[V = \left( {\dfrac{{2d}}{d} + \dfrac{{3d}}{{2d}} + ... + \dfrac{{\left( {n - 1} \right)d}}{{\left( {n - 2} \right)d}}} \right) - d\left( {\dfrac{1}{d} + \dfrac{1}{{2d}} + ... + \dfrac{1}{{\left( {n - 3} \right)d}}} \right)\]
Simplify the above equation.
\[V = \left( {2 + \dfrac{3}{2} + ... + \dfrac{{\left( {n - 1} \right)}}{{\left( {n - 2} \right)}}} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {\left( {1 + 1} \right) + \left( {1 + \dfrac{1}{2}} \right) + ... + \left( {1 + \dfrac{1}{{\left( {n - 2} \right)}}} \right)} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {1 + 1 + 1 + ....\left( {n - 2} \right)times} \right) + \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}} + \dfrac{1}{{\left( {n - 2} \right)}}} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\]
Thus, the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\] is \[\left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\].
Hence the correct option is A.
Note: Students often do a common mistake that is they are using the formula for \[{n^{th}}\] term is \[{a_n} = a + nd\] which is a wrong formula. The correct formula is \[{a_n} = a + \left( {n - 1} \right)d\].
Formula used:
The formula of the \[{n^{th}}\] term in an arithmetic progression: \[{a_n} = a + \left( {n - 1} \right)d\], where \[a\] is the first term and \[d\] is the common difference.
Formula of the common difference: \[d = {a_n} - {a_{n - 1}}\]
Complete step by step solution:
Given:
\[{a_1},{a_2},{a_3},...{a_n}\] are in the arithmetic progression and \[{a_1} = 0\].
Let’s calculate the common difference of the above arithmetic progression.
\[d = {a_2} - {a_1}\]
Since \[{a_1} = 0\].
So, \[{a_2} = d\]
Now apply the formula of the \[{n^{th}}\] term in an arithmetic progression.
We get,
\[{a_3} = {a_1} + 2d = 2d\]
\[{a_4} = {a_1} + 3d = 3d\]
And so on.
\[{a_{n - 1}} = {a_1} + \left( {n - 2} \right)d = \left( {n - 2} \right)d\]
\[{a_n} = {a_1} + \left( {n - 1} \right)d = \left( {n - 1} \right)d\]
Let \[V\] be the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\].
Then,
\[V = \left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\]
Substitute the values in the above equation.
\[V = \left( {\dfrac{{2d}}{d} + \dfrac{{3d}}{{2d}} + ... + \dfrac{{\left( {n - 1} \right)d}}{{\left( {n - 2} \right)d}}} \right) - d\left( {\dfrac{1}{d} + \dfrac{1}{{2d}} + ... + \dfrac{1}{{\left( {n - 3} \right)d}}} \right)\]
Simplify the above equation.
\[V = \left( {2 + \dfrac{3}{2} + ... + \dfrac{{\left( {n - 1} \right)}}{{\left( {n - 2} \right)}}} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {\left( {1 + 1} \right) + \left( {1 + \dfrac{1}{2}} \right) + ... + \left( {1 + \dfrac{1}{{\left( {n - 2} \right)}}} \right)} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {1 + 1 + 1 + ....\left( {n - 2} \right)times} \right) + \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}} + \dfrac{1}{{\left( {n - 2} \right)}}} \right) - \left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{\left( {n - 3} \right)}}} \right)\]
\[ \Rightarrow V = \left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\]
Thus, the value of \[\left( {\dfrac{{{a_3}}}{{{a_2}}} + \dfrac{{{a_4}}}{{{a_3}}} + ... + \dfrac{{{a_n}}}{{{a_{n - 1}}}}} \right) - {a_2}\left( {\dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 2}}}}} \right)\] is \[\left( {n - 2} \right) + \dfrac{1}{{\left( {n - 2} \right)}}\].
Hence the correct option is A.
Note: Students often do a common mistake that is they are using the formula for \[{n^{th}}\] term is \[{a_n} = a + nd\] which is a wrong formula. The correct formula is \[{a_n} = a + \left( {n - 1} \right)d\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

