
If a root of the equation $a x^{2}+b x+c=0$ be reciprocal of a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then?
A. $\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}-c b^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$
B. $\left(b b^{\prime}-a a^{\prime}\right)^{2}=\left(c a^{\prime}-b c^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$
C. $\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}+c b^{\prime}\right)\left(a b^{\prime}+b c^{\prime}\right)$
D. None of the above
Answer
163.8k+ views
Hint: In this question, we have to find the relationship between the coefficients of the given two quadratic equations. We are given the relationship between the roots of these two quadratic equations. Here we are to use the substitution and elimination methods to reach the solution.
Complete step by step solution: We are given two quadratic equations — $a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
Let $\alpha$ and $\beta$ be the roots of the equation $a x^{2}+b x+c=0$ and $\gamma$ and $\delta$ be the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
We have that one of the roots of $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ is the reciprocal of a root of the equation $a x^{2}+b x+c=0$.
Therefore, we have
$\delta=\dfrac{1}{\alpha}$
Therefore, the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ are $\gamma$ and $\dfrac{1}{\alpha}$.
Now we have $\alpha$ is a root of the equation $a x^{2}+b x+c=0$, then
$a \alpha^{2}+b \alpha+c=0$ ----- (1)
Also, we have $\dfrac{1}{\alpha}$ is a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then
$a^{\prime}\left(\dfrac{1}{\alpha}\right)^{2}+b^{\prime}\left(\dfrac{1}{\alpha}\right)+c^{\prime}=0$
$\dfrac{a^{\prime}}{\alpha^{2}}+\dfrac{b^{\prime}}{\alpha}+c^{\prime}=0 $
$\dfrac{a^{\prime}+b^{\prime} \alpha+c^{\prime} \alpha^{2}}{\alpha^{2}}=0$
$c^{\prime} \alpha^{2}+b^{\prime} \alpha+a^{\prime}=0$ ------ (2)
Multiply equation (1) by $c^{\prime}$ and equation (2) by $a$.
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
Subtracting these two equations we get,
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
$\left(c^{\prime} b-b^{\prime} a\right) \alpha+\left(c^{\prime} c-a^{\prime} a\right)=0$
$\alpha=\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}$
Substitute the value of in equation (1),
$a\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]^{2}+b\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]+c=0 $
$\dfrac{a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}}{\left(c^{\prime} b-b^{\prime} a\right)^{2}}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b\left(a a^{\prime}-c c^{\prime}\right)+c\left(c^{\prime} b-b^{\prime} a\right)\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b a a^{\prime}-b c c^{\prime}+c c^{\prime} b-b^{\prime} a c\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} a c\right)=0$
$a\left(a a^{\prime}-c c^{\prime}\right)+a\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} c\right)=0$
$a\left[\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a^{\prime} b-b^{\prime} c\right)\right]=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a ^{\prime} b-b^{\prime} c\right)=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}=-\left[\left(c^{\prime} b-a b^{\prime}\right)\left(a^{\prime} b-c b^{\prime}\right)\right]$
$\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(c^{\prime} b-a b^{\prime}\right)\left(a ^{\prime} b-c b^{\prime}\right)$
So, Option ‘A’ is correct
Note: In this question even though we were dealing with the roots of the polynomial we did not use the relationship between the roots and the coefficients. We have used the basic concepts of roots and substituted the values we obtained. Be careful with the substitution part, do not expand all the brackets instead look for common terms, bring them together then simply the terms.
Complete step by step solution: We are given two quadratic equations — $a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
Let $\alpha$ and $\beta$ be the roots of the equation $a x^{2}+b x+c=0$ and $\gamma$ and $\delta$ be the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
We have that one of the roots of $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ is the reciprocal of a root of the equation $a x^{2}+b x+c=0$.
Therefore, we have
$\delta=\dfrac{1}{\alpha}$
Therefore, the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ are $\gamma$ and $\dfrac{1}{\alpha}$.
Now we have $\alpha$ is a root of the equation $a x^{2}+b x+c=0$, then
$a \alpha^{2}+b \alpha+c=0$ ----- (1)
Also, we have $\dfrac{1}{\alpha}$ is a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then
$a^{\prime}\left(\dfrac{1}{\alpha}\right)^{2}+b^{\prime}\left(\dfrac{1}{\alpha}\right)+c^{\prime}=0$
$\dfrac{a^{\prime}}{\alpha^{2}}+\dfrac{b^{\prime}}{\alpha}+c^{\prime}=0 $
$\dfrac{a^{\prime}+b^{\prime} \alpha+c^{\prime} \alpha^{2}}{\alpha^{2}}=0$
$c^{\prime} \alpha^{2}+b^{\prime} \alpha+a^{\prime}=0$ ------ (2)
Multiply equation (1) by $c^{\prime}$ and equation (2) by $a$.
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
Subtracting these two equations we get,
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
$\left(c^{\prime} b-b^{\prime} a\right) \alpha+\left(c^{\prime} c-a^{\prime} a\right)=0$
$\alpha=\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}$
Substitute the value of in equation (1),
$a\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]^{2}+b\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]+c=0 $
$\dfrac{a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}}{\left(c^{\prime} b-b^{\prime} a\right)^{2}}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b\left(a a^{\prime}-c c^{\prime}\right)+c\left(c^{\prime} b-b^{\prime} a\right)\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b a a^{\prime}-b c c^{\prime}+c c^{\prime} b-b^{\prime} a c\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} a c\right)=0$
$a\left(a a^{\prime}-c c^{\prime}\right)+a\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} c\right)=0$
$a\left[\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a^{\prime} b-b^{\prime} c\right)\right]=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a ^{\prime} b-b^{\prime} c\right)=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}=-\left[\left(c^{\prime} b-a b^{\prime}\right)\left(a^{\prime} b-c b^{\prime}\right)\right]$
$\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(c^{\prime} b-a b^{\prime}\right)\left(a ^{\prime} b-c b^{\prime}\right)$
So, Option ‘A’ is correct
Note: In this question even though we were dealing with the roots of the polynomial we did not use the relationship between the roots and the coefficients. We have used the basic concepts of roots and substituted the values we obtained. Be careful with the substitution part, do not expand all the brackets instead look for common terms, bring them together then simply the terms.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
