
If a root of the equation $a x^{2}+b x+c=0$ be reciprocal of a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then?
A. $\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}-c b^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$
B. $\left(b b^{\prime}-a a^{\prime}\right)^{2}=\left(c a^{\prime}-b c^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$
C. $\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}+c b^{\prime}\right)\left(a b^{\prime}+b c^{\prime}\right)$
D. None of the above
Answer
218.4k+ views
Hint: In this question, we have to find the relationship between the coefficients of the given two quadratic equations. We are given the relationship between the roots of these two quadratic equations. Here we are to use the substitution and elimination methods to reach the solution.
Complete step by step solution: We are given two quadratic equations — $a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
Let $\alpha$ and $\beta$ be the roots of the equation $a x^{2}+b x+c=0$ and $\gamma$ and $\delta$ be the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
We have that one of the roots of $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ is the reciprocal of a root of the equation $a x^{2}+b x+c=0$.
Therefore, we have
$\delta=\dfrac{1}{\alpha}$
Therefore, the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ are $\gamma$ and $\dfrac{1}{\alpha}$.
Now we have $\alpha$ is a root of the equation $a x^{2}+b x+c=0$, then
$a \alpha^{2}+b \alpha+c=0$ ----- (1)
Also, we have $\dfrac{1}{\alpha}$ is a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then
$a^{\prime}\left(\dfrac{1}{\alpha}\right)^{2}+b^{\prime}\left(\dfrac{1}{\alpha}\right)+c^{\prime}=0$
$\dfrac{a^{\prime}}{\alpha^{2}}+\dfrac{b^{\prime}}{\alpha}+c^{\prime}=0 $
$\dfrac{a^{\prime}+b^{\prime} \alpha+c^{\prime} \alpha^{2}}{\alpha^{2}}=0$
$c^{\prime} \alpha^{2}+b^{\prime} \alpha+a^{\prime}=0$ ------ (2)
Multiply equation (1) by $c^{\prime}$ and equation (2) by $a$.
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
Subtracting these two equations we get,
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
$\left(c^{\prime} b-b^{\prime} a\right) \alpha+\left(c^{\prime} c-a^{\prime} a\right)=0$
$\alpha=\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}$
Substitute the value of in equation (1),
$a\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]^{2}+b\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]+c=0 $
$\dfrac{a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}}{\left(c^{\prime} b-b^{\prime} a\right)^{2}}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b\left(a a^{\prime}-c c^{\prime}\right)+c\left(c^{\prime} b-b^{\prime} a\right)\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b a a^{\prime}-b c c^{\prime}+c c^{\prime} b-b^{\prime} a c\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} a c\right)=0$
$a\left(a a^{\prime}-c c^{\prime}\right)+a\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} c\right)=0$
$a\left[\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a^{\prime} b-b^{\prime} c\right)\right]=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a ^{\prime} b-b^{\prime} c\right)=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}=-\left[\left(c^{\prime} b-a b^{\prime}\right)\left(a^{\prime} b-c b^{\prime}\right)\right]$
$\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(c^{\prime} b-a b^{\prime}\right)\left(a ^{\prime} b-c b^{\prime}\right)$
So, Option ‘A’ is correct
Note: In this question even though we were dealing with the roots of the polynomial we did not use the relationship between the roots and the coefficients. We have used the basic concepts of roots and substituted the values we obtained. Be careful with the substitution part, do not expand all the brackets instead look for common terms, bring them together then simply the terms.
Complete step by step solution: We are given two quadratic equations — $a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
Let $\alpha$ and $\beta$ be the roots of the equation $a x^{2}+b x+c=0$ and $\gamma$ and $\delta$ be the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
We have that one of the roots of $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ is the reciprocal of a root of the equation $a x^{2}+b x+c=0$.
Therefore, we have
$\delta=\dfrac{1}{\alpha}$
Therefore, the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ are $\gamma$ and $\dfrac{1}{\alpha}$.
Now we have $\alpha$ is a root of the equation $a x^{2}+b x+c=0$, then
$a \alpha^{2}+b \alpha+c=0$ ----- (1)
Also, we have $\dfrac{1}{\alpha}$ is a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then
$a^{\prime}\left(\dfrac{1}{\alpha}\right)^{2}+b^{\prime}\left(\dfrac{1}{\alpha}\right)+c^{\prime}=0$
$\dfrac{a^{\prime}}{\alpha^{2}}+\dfrac{b^{\prime}}{\alpha}+c^{\prime}=0 $
$\dfrac{a^{\prime}+b^{\prime} \alpha+c^{\prime} \alpha^{2}}{\alpha^{2}}=0$
$c^{\prime} \alpha^{2}+b^{\prime} \alpha+a^{\prime}=0$ ------ (2)
Multiply equation (1) by $c^{\prime}$ and equation (2) by $a$.
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
Subtracting these two equations we get,
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
$\left(c^{\prime} b-b^{\prime} a\right) \alpha+\left(c^{\prime} c-a^{\prime} a\right)=0$
$\alpha=\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}$
Substitute the value of in equation (1),
$a\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]^{2}+b\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]+c=0 $
$\dfrac{a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}}{\left(c^{\prime} b-b^{\prime} a\right)^{2}}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b\left(a a^{\prime}-c c^{\prime}\right)+c\left(c^{\prime} b-b^{\prime} a\right)\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b a a^{\prime}-b c c^{\prime}+c c^{\prime} b-b^{\prime} a c\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} a c\right)=0$
$a\left(a a^{\prime}-c c^{\prime}\right)+a\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} c\right)=0$
$a\left[\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a^{\prime} b-b^{\prime} c\right)\right]=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a ^{\prime} b-b^{\prime} c\right)=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}=-\left[\left(c^{\prime} b-a b^{\prime}\right)\left(a^{\prime} b-c b^{\prime}\right)\right]$
$\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(c^{\prime} b-a b^{\prime}\right)\left(a ^{\prime} b-c b^{\prime}\right)$
So, Option ‘A’ is correct
Note: In this question even though we were dealing with the roots of the polynomial we did not use the relationship between the roots and the coefficients. We have used the basic concepts of roots and substituted the values we obtained. Be careful with the substitution part, do not expand all the brackets instead look for common terms, bring them together then simply the terms.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

