
If a root of the equation $a x^{2}+b x+c=0$ be reciprocal of a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then?
A. $\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}-c b^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$
B. $\left(b b^{\prime}-a a^{\prime}\right)^{2}=\left(c a^{\prime}-b c^{\prime}\right)\left(a b^{\prime}-b c^{\prime}\right)$
C. $\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(b a^{\prime}+c b^{\prime}\right)\left(a b^{\prime}+b c^{\prime}\right)$
D. None of the above
Answer
233.1k+ views
Hint: In this question, we have to find the relationship between the coefficients of the given two quadratic equations. We are given the relationship between the roots of these two quadratic equations. Here we are to use the substitution and elimination methods to reach the solution.
Complete step by step solution: We are given two quadratic equations — $a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
Let $\alpha$ and $\beta$ be the roots of the equation $a x^{2}+b x+c=0$ and $\gamma$ and $\delta$ be the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
We have that one of the roots of $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ is the reciprocal of a root of the equation $a x^{2}+b x+c=0$.
Therefore, we have
$\delta=\dfrac{1}{\alpha}$
Therefore, the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ are $\gamma$ and $\dfrac{1}{\alpha}$.
Now we have $\alpha$ is a root of the equation $a x^{2}+b x+c=0$, then
$a \alpha^{2}+b \alpha+c=0$ ----- (1)
Also, we have $\dfrac{1}{\alpha}$ is a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then
$a^{\prime}\left(\dfrac{1}{\alpha}\right)^{2}+b^{\prime}\left(\dfrac{1}{\alpha}\right)+c^{\prime}=0$
$\dfrac{a^{\prime}}{\alpha^{2}}+\dfrac{b^{\prime}}{\alpha}+c^{\prime}=0 $
$\dfrac{a^{\prime}+b^{\prime} \alpha+c^{\prime} \alpha^{2}}{\alpha^{2}}=0$
$c^{\prime} \alpha^{2}+b^{\prime} \alpha+a^{\prime}=0$ ------ (2)
Multiply equation (1) by $c^{\prime}$ and equation (2) by $a$.
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
Subtracting these two equations we get,
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
$\left(c^{\prime} b-b^{\prime} a\right) \alpha+\left(c^{\prime} c-a^{\prime} a\right)=0$
$\alpha=\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}$
Substitute the value of in equation (1),
$a\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]^{2}+b\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]+c=0 $
$\dfrac{a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}}{\left(c^{\prime} b-b^{\prime} a\right)^{2}}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b\left(a a^{\prime}-c c^{\prime}\right)+c\left(c^{\prime} b-b^{\prime} a\right)\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b a a^{\prime}-b c c^{\prime}+c c^{\prime} b-b^{\prime} a c\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} a c\right)=0$
$a\left(a a^{\prime}-c c^{\prime}\right)+a\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} c\right)=0$
$a\left[\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a^{\prime} b-b^{\prime} c\right)\right]=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a ^{\prime} b-b^{\prime} c\right)=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}=-\left[\left(c^{\prime} b-a b^{\prime}\right)\left(a^{\prime} b-c b^{\prime}\right)\right]$
$\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(c^{\prime} b-a b^{\prime}\right)\left(a ^{\prime} b-c b^{\prime}\right)$
So, Option ‘A’ is correct
Note: In this question even though we were dealing with the roots of the polynomial we did not use the relationship between the roots and the coefficients. We have used the basic concepts of roots and substituted the values we obtained. Be careful with the substitution part, do not expand all the brackets instead look for common terms, bring them together then simply the terms.
Complete step by step solution: We are given two quadratic equations — $a x^{2}+b x+c=0$ and $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
Let $\alpha$ and $\beta$ be the roots of the equation $a x^{2}+b x+c=0$ and $\gamma$ and $\delta$ be the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$.
We have that one of the roots of $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ is the reciprocal of a root of the equation $a x^{2}+b x+c=0$.
Therefore, we have
$\delta=\dfrac{1}{\alpha}$
Therefore, the roots of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$ are $\gamma$ and $\dfrac{1}{\alpha}$.
Now we have $\alpha$ is a root of the equation $a x^{2}+b x+c=0$, then
$a \alpha^{2}+b \alpha+c=0$ ----- (1)
Also, we have $\dfrac{1}{\alpha}$ is a root of the equation $a^{\prime} x^{2}+b^{\prime} x+c^{\prime}=0$, then
$a^{\prime}\left(\dfrac{1}{\alpha}\right)^{2}+b^{\prime}\left(\dfrac{1}{\alpha}\right)+c^{\prime}=0$
$\dfrac{a^{\prime}}{\alpha^{2}}+\dfrac{b^{\prime}}{\alpha}+c^{\prime}=0 $
$\dfrac{a^{\prime}+b^{\prime} \alpha+c^{\prime} \alpha^{2}}{\alpha^{2}}=0$
$c^{\prime} \alpha^{2}+b^{\prime} \alpha+a^{\prime}=0$ ------ (2)
Multiply equation (1) by $c^{\prime}$ and equation (2) by $a$.
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
Subtracting these two equations we get,
$c^{\prime} a \alpha^{2}+c^{\prime} b \alpha+c^{\prime} c=0$
$c^{\prime} a \alpha^{2}+b^{\prime} a \alpha+a^{\prime} a=0$
$\left(c^{\prime} b-b^{\prime} a\right) \alpha+\left(c^{\prime} c-a^{\prime} a\right)=0$
$\alpha=\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}$
Substitute the value of in equation (1),
$a\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]^{2}+b\left[\dfrac{a a^{\prime}-c c^{\prime}}{c^{\prime} b-b^{\prime} a}\right]+c=0 $
$\dfrac{a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}}{\left(c^{\prime} b-b^{\prime} a\right)^{2}}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+b\left(a a^{\prime}-c c^{\prime}\right)\left(c^{\prime} b-b^{\prime} a\right)+c\left(c^{\prime} b-b^{\prime} a\right)^{2}=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b\left(a a^{\prime}-c c^{\prime}\right)+c\left(c^{\prime} b-b^{\prime} a\right)\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left[b a a^{\prime}-b c c^{\prime}+c c^{\prime} b-b^{\prime} a c\right]=0$
$a\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} a c\right)=0$
$a\left(a a^{\prime}-c c^{\prime}\right)+a\left(c^{\prime} b-b^{\prime} a\right)\left(b a^{\prime}-b^{\prime} c\right)=0$
$a\left[\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a^{\prime} b-b^{\prime} c\right)\right]=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}+\left(c^{\prime} b-b^{\prime} a\right)\left(a ^{\prime} b-b^{\prime} c\right)=0$
$\left(a a^{\prime}-c c^{\prime}\right)^{2}=-\left[\left(c^{\prime} b-a b^{\prime}\right)\left(a^{\prime} b-c b^{\prime}\right)\right]$
$\left(c c^{\prime}-a a^{\prime}\right)^{2}=\left(c^{\prime} b-a b^{\prime}\right)\left(a ^{\prime} b-c b^{\prime}\right)$
So, Option ‘A’ is correct
Note: In this question even though we were dealing with the roots of the polynomial we did not use the relationship between the roots and the coefficients. We have used the basic concepts of roots and substituted the values we obtained. Be careful with the substitution part, do not expand all the brackets instead look for common terms, bring them together then simply the terms.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

