
If A = $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ then ${{A}^{n}}$ is equal to $[n\in N]$
A . $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
B . $\left[ \begin{matrix}
n & n \\
0 & n \\
\end{matrix} \right]$
C . $\left[ \begin{matrix}
n & 1 \\
0 & 1 \\
\end{matrix} \right]$
D . none of these
Answer
164.7k+ views
Hint: We are given a matrix and we have to find the n terms of that matrix. We know a square matrix is a matrix which has same number of rows and columns. First we find the square of matrix. To Find the square of A we multiply A with A and after simplifying it , we get the value of square of matrix A and similary we find the cube of A by multiplying square of A with A then by comparing the values, we find the ${{A}^{n}}$.
Complete Step- by- Step Solution:
We have given the matrix A = $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
First we find the matrix ${{A}^{2}}$
We will now perform matrix multiplication
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
[1\times 1]+[1\times 0] & [1\times 1]+[1\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$
Now we find the ${{A}^{3}}$
For this we multiply ${{A}^{2}}$with A
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{3}}$= $\left[ \begin{matrix}
[1\times 1]+[2\times 0] & [1\times 1]+[2\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]$
Here we observe a pattern. Whenever we multiply the terms, all the values remains same except first row and second column value. So there we generalize the value of ${{A}^{n}}$
Now we find the value of ${{A}^{n}}$
${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Hence the value of ${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Thus, Option (A) is correct.
Note: Students must take care while multiplying the two matrices. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. When we want to multiply the matrices, then the parts of the rows in first matrix are multiplied with the columns in the second matrix.
Complete Step- by- Step Solution:
We have given the matrix A = $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
First we find the matrix ${{A}^{2}}$
We will now perform matrix multiplication
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
[1\times 1]+[1\times 0] & [1\times 1]+[1\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$
Now we find the ${{A}^{3}}$
For this we multiply ${{A}^{2}}$with A
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{3}}$= $\left[ \begin{matrix}
[1\times 1]+[2\times 0] & [1\times 1]+[2\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]$
Here we observe a pattern. Whenever we multiply the terms, all the values remains same except first row and second column value. So there we generalize the value of ${{A}^{n}}$
Now we find the value of ${{A}^{n}}$
${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Hence the value of ${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Thus, Option (A) is correct.
Note: Students must take care while multiplying the two matrices. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. When we want to multiply the matrices, then the parts of the rows in first matrix are multiplied with the columns in the second matrix.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Get P Block Elements for JEE Main 2025 with clear Explanations

Sets, Relations and Functions Chapter For JEE Main Maths

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
