
If A = $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ then ${{A}^{n}}$ is equal to $[n\in N]$
A . $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
B . $\left[ \begin{matrix}
n & n \\
0 & n \\
\end{matrix} \right]$
C . $\left[ \begin{matrix}
n & 1 \\
0 & 1 \\
\end{matrix} \right]$
D . none of these
Answer
163.5k+ views
Hint: We are given a matrix and we have to find the n terms of that matrix. We know a square matrix is a matrix which has same number of rows and columns. First we find the square of matrix. To Find the square of A we multiply A with A and after simplifying it , we get the value of square of matrix A and similary we find the cube of A by multiplying square of A with A then by comparing the values, we find the ${{A}^{n}}$.
Complete Step- by- Step Solution:
We have given the matrix A = $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
First we find the matrix ${{A}^{2}}$
We will now perform matrix multiplication
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
[1\times 1]+[1\times 0] & [1\times 1]+[1\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$
Now we find the ${{A}^{3}}$
For this we multiply ${{A}^{2}}$with A
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{3}}$= $\left[ \begin{matrix}
[1\times 1]+[2\times 0] & [1\times 1]+[2\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]$
Here we observe a pattern. Whenever we multiply the terms, all the values remains same except first row and second column value. So there we generalize the value of ${{A}^{n}}$
Now we find the value of ${{A}^{n}}$
${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Hence the value of ${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Thus, Option (A) is correct.
Note: Students must take care while multiplying the two matrices. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. When we want to multiply the matrices, then the parts of the rows in first matrix are multiplied with the columns in the second matrix.
Complete Step- by- Step Solution:
We have given the matrix A = $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
First we find the matrix ${{A}^{2}}$
We will now perform matrix multiplication
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
[1\times 1]+[1\times 0] & [1\times 1]+[1\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$
Now we find the ${{A}^{3}}$
For this we multiply ${{A}^{2}}$with A
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{3}}$= $\left[ \begin{matrix}
[1\times 1]+[2\times 0] & [1\times 1]+[2\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]$
Here we observe a pattern. Whenever we multiply the terms, all the values remains same except first row and second column value. So there we generalize the value of ${{A}^{n}}$
Now we find the value of ${{A}^{n}}$
${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Hence the value of ${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Thus, Option (A) is correct.
Note: Students must take care while multiplying the two matrices. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. When we want to multiply the matrices, then the parts of the rows in first matrix are multiplied with the columns in the second matrix.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

IIIT JEE Main Cutoff 2024

IIT Full Form

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Main Cut-Off for VNIT Nagpur 2025: Check All Rounds Cutoff Ranks

Other Pages
NEET 2025: All Major Changes in Application Process, Pattern and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025: Important Information and Key Updates

1 Billion in Rupees - Conversion, Solved Examples and FAQs

NEET 2025 Syllabus PDF by NTA (Released)

Important Days In June: What Do You Need To Know
