
If A =\[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\], B = \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\] where \[i = \sqrt { - 1} \], then the correct relation is
A. \[A + B = 0\]
B. \[{A^2} = {B^2}\]
C. \[A - B = 0\]
D. \[{A^2} + {B^2} = 0\]
Answer
163.2k+ views
Hint: In this question, we have given two matrices A and B and we have to find out the correct option which satisfies the given matrix. First we add the given matrix then we check whether the answer is zero matrix or not. Then we square both the matrix and check it whether it is equal or not. Then in third option, we subtract the matrix and in option fourth, we add the square of both the matrix and check the correct option.
Formula Used :
Here in this question we have to use the concept of multiplication of matrices.
Complete Step by Step Solution:
We have given the matrix A = \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] and B = \[\]\[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
We solve it by using options
Let us consider Option (1)
We check whether \[A + B = 0\]
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] + \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}{i + 0}&{0 + i}\\{0 + i}&{ - i + 0}\end{array}} \right]\]
Solving further, we get
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}i&i\\i&{ - i}\end{array}} \right]\]
Hence \[A + B\]is a non- zero matrix.
Thus \[A + B \ne 0\]
Now we consider Option (2)
In Option (2), first we find \[{A^2}\]and \[{B^2}\]
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\]
Multiplication of both the matrices, we get
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{i \times i + 0 \times 0}&{i \times 0 + 0 \times - i}\\{0 \times i - i \times 0}&{0 \times 0 - i \times i}\end{array}} \right]\]
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{{i^2}}&0\\0&{{i^2}}\end{array}} \right]\]
As \[i = \sqrt { - 1} \]
So \[{i^2} = - 1\]
Hence \[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
Similarly \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\] \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
On multiplying both the matrix, we get
\[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{0 \times 0 + i \times i}&{i \times 0 + 0 \times i}\\{0 \times i + i \times 0}&{0 \times - 0 + i \times i}\end{array}} \right]\]
Then \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{{i^2}}&0\\0&{{i^2}}\end{array}} \right]\]
Hence \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
Hence \[{A^2} = {B^2}\]
Now we check Option ( C )
\[A - B\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\]- \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
\[A - B\]= \[\left[ {\begin{array}{*{20}{c}}{i - 0}&{0 - i}\\{0 - i}&{ - i - 0}\end{array}} \right]\]
Hence \[A - B\]= \[\left[ {\begin{array}{*{20}{c}}i&{ - i}\\{ - i}&{ - i}\end{array}} \right]\]
Thus \[A - B \ne 0\]
Now we check Option (D)
As we find the values of \[{A^2}\]and \[{B^2}\] in the Option (B)
We put the values directly
Then \[{A^2} + {B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\] + \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
\[{A^2} + {B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 2}&0\\0&{ - 2}\end{array}} \right]\]
Hence, we see that only Option ( B ) satisfies the given equation.
Thus Option (B) is correct :
Note: In these types of questions, students made mistakes while the multiplication of two matrices. In multiplying the matrices, the number of columns of the first matrix must be equal to the number of rows of the second matrix. When we multiply the matrices, then the parts of the rows in the first matrix are multiplied with the columns in the second matrix.
Formula Used :
Here in this question we have to use the concept of multiplication of matrices.
Complete Step by Step Solution:
We have given the matrix A = \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] and B = \[\]\[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
We solve it by using options
Let us consider Option (1)
We check whether \[A + B = 0\]
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] + \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}{i + 0}&{0 + i}\\{0 + i}&{ - i + 0}\end{array}} \right]\]
Solving further, we get
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}i&i\\i&{ - i}\end{array}} \right]\]
Hence \[A + B\]is a non- zero matrix.
Thus \[A + B \ne 0\]
Now we consider Option (2)
In Option (2), first we find \[{A^2}\]and \[{B^2}\]
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\]
Multiplication of both the matrices, we get
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{i \times i + 0 \times 0}&{i \times 0 + 0 \times - i}\\{0 \times i - i \times 0}&{0 \times 0 - i \times i}\end{array}} \right]\]
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{{i^2}}&0\\0&{{i^2}}\end{array}} \right]\]
As \[i = \sqrt { - 1} \]
So \[{i^2} = - 1\]
Hence \[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
Similarly \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\] \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
On multiplying both the matrix, we get
\[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{0 \times 0 + i \times i}&{i \times 0 + 0 \times i}\\{0 \times i + i \times 0}&{0 \times - 0 + i \times i}\end{array}} \right]\]
Then \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{{i^2}}&0\\0&{{i^2}}\end{array}} \right]\]
Hence \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
Hence \[{A^2} = {B^2}\]
Now we check Option ( C )
\[A - B\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\]- \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
\[A - B\]= \[\left[ {\begin{array}{*{20}{c}}{i - 0}&{0 - i}\\{0 - i}&{ - i - 0}\end{array}} \right]\]
Hence \[A - B\]= \[\left[ {\begin{array}{*{20}{c}}i&{ - i}\\{ - i}&{ - i}\end{array}} \right]\]
Thus \[A - B \ne 0\]
Now we check Option (D)
As we find the values of \[{A^2}\]and \[{B^2}\] in the Option (B)
We put the values directly
Then \[{A^2} + {B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\] + \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
\[{A^2} + {B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 2}&0\\0&{ - 2}\end{array}} \right]\]
Hence, we see that only Option ( B ) satisfies the given equation.
Thus Option (B) is correct :
Note: In these types of questions, students made mistakes while the multiplication of two matrices. In multiplying the matrices, the number of columns of the first matrix must be equal to the number of rows of the second matrix. When we multiply the matrices, then the parts of the rows in the first matrix are multiplied with the columns in the second matrix.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
