
If A =\[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\], B = \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\] where \[i = \sqrt { - 1} \], then the correct relation is
A. \[A + B = 0\]
B. \[{A^2} = {B^2}\]
C. \[A - B = 0\]
D. \[{A^2} + {B^2} = 0\]
Answer
216.3k+ views
Hint: In this question, we have given two matrices A and B and we have to find out the correct option which satisfies the given matrix. First we add the given matrix then we check whether the answer is zero matrix or not. Then we square both the matrix and check it whether it is equal or not. Then in third option, we subtract the matrix and in option fourth, we add the square of both the matrix and check the correct option.
Formula Used :
Here in this question we have to use the concept of multiplication of matrices.
Complete Step by Step Solution:
We have given the matrix A = \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] and B = \[\]\[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
We solve it by using options
Let us consider Option (1)
We check whether \[A + B = 0\]
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] + \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}{i + 0}&{0 + i}\\{0 + i}&{ - i + 0}\end{array}} \right]\]
Solving further, we get
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}i&i\\i&{ - i}\end{array}} \right]\]
Hence \[A + B\]is a non- zero matrix.
Thus \[A + B \ne 0\]
Now we consider Option (2)
In Option (2), first we find \[{A^2}\]and \[{B^2}\]
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\]
Multiplication of both the matrices, we get
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{i \times i + 0 \times 0}&{i \times 0 + 0 \times - i}\\{0 \times i - i \times 0}&{0 \times 0 - i \times i}\end{array}} \right]\]
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{{i^2}}&0\\0&{{i^2}}\end{array}} \right]\]
As \[i = \sqrt { - 1} \]
So \[{i^2} = - 1\]
Hence \[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
Similarly \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\] \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
On multiplying both the matrix, we get
\[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{0 \times 0 + i \times i}&{i \times 0 + 0 \times i}\\{0 \times i + i \times 0}&{0 \times - 0 + i \times i}\end{array}} \right]\]
Then \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{{i^2}}&0\\0&{{i^2}}\end{array}} \right]\]
Hence \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
Hence \[{A^2} = {B^2}\]
Now we check Option ( C )
\[A - B\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\]- \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
\[A - B\]= \[\left[ {\begin{array}{*{20}{c}}{i - 0}&{0 - i}\\{0 - i}&{ - i - 0}\end{array}} \right]\]
Hence \[A - B\]= \[\left[ {\begin{array}{*{20}{c}}i&{ - i}\\{ - i}&{ - i}\end{array}} \right]\]
Thus \[A - B \ne 0\]
Now we check Option (D)
As we find the values of \[{A^2}\]and \[{B^2}\] in the Option (B)
We put the values directly
Then \[{A^2} + {B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\] + \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
\[{A^2} + {B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 2}&0\\0&{ - 2}\end{array}} \right]\]
Hence, we see that only Option ( B ) satisfies the given equation.
Thus Option (B) is correct :
Note: In these types of questions, students made mistakes while the multiplication of two matrices. In multiplying the matrices, the number of columns of the first matrix must be equal to the number of rows of the second matrix. When we multiply the matrices, then the parts of the rows in the first matrix are multiplied with the columns in the second matrix.
Formula Used :
Here in this question we have to use the concept of multiplication of matrices.
Complete Step by Step Solution:
We have given the matrix A = \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] and B = \[\]\[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
We solve it by using options
Let us consider Option (1)
We check whether \[A + B = 0\]
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] + \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}{i + 0}&{0 + i}\\{0 + i}&{ - i + 0}\end{array}} \right]\]
Solving further, we get
\[A + B\]= \[\left[ {\begin{array}{*{20}{c}}i&i\\i&{ - i}\end{array}} \right]\]
Hence \[A + B\]is a non- zero matrix.
Thus \[A + B \ne 0\]
Now we consider Option (2)
In Option (2), first we find \[{A^2}\]and \[{B^2}\]
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\] \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\]
Multiplication of both the matrices, we get
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{i \times i + 0 \times 0}&{i \times 0 + 0 \times - i}\\{0 \times i - i \times 0}&{0 \times 0 - i \times i}\end{array}} \right]\]
\[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{{i^2}}&0\\0&{{i^2}}\end{array}} \right]\]
As \[i = \sqrt { - 1} \]
So \[{i^2} = - 1\]
Hence \[{A^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
Similarly \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\] \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
On multiplying both the matrix, we get
\[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{0 \times 0 + i \times i}&{i \times 0 + 0 \times i}\\{0 \times i + i \times 0}&{0 \times - 0 + i \times i}\end{array}} \right]\]
Then \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{{i^2}}&0\\0&{{i^2}}\end{array}} \right]\]
Hence \[{B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
Hence \[{A^2} = {B^2}\]
Now we check Option ( C )
\[A - B\]= \[\left[ {\begin{array}{*{20}{c}}i&0\\0&{ - i}\end{array}} \right]\]- \[\left[ {\begin{array}{*{20}{c}}0&i\\i&0\end{array}} \right]\]
\[A - B\]= \[\left[ {\begin{array}{*{20}{c}}{i - 0}&{0 - i}\\{0 - i}&{ - i - 0}\end{array}} \right]\]
Hence \[A - B\]= \[\left[ {\begin{array}{*{20}{c}}i&{ - i}\\{ - i}&{ - i}\end{array}} \right]\]
Thus \[A - B \ne 0\]
Now we check Option (D)
As we find the values of \[{A^2}\]and \[{B^2}\] in the Option (B)
We put the values directly
Then \[{A^2} + {B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\] + \[\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&{ - 1}\end{array}} \right]\]
\[{A^2} + {B^2}\]= \[\left[ {\begin{array}{*{20}{c}}{ - 2}&0\\0&{ - 2}\end{array}} \right]\]
Hence, we see that only Option ( B ) satisfies the given equation.
Thus Option (B) is correct :
Note: In these types of questions, students made mistakes while the multiplication of two matrices. In multiplying the matrices, the number of columns of the first matrix must be equal to the number of rows of the second matrix. When we multiply the matrices, then the parts of the rows in the first matrix are multiplied with the columns in the second matrix.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

