
If $a > b > 0$, then what is the value of ${\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{a - b}}} \right)$?
A. Both $a$ and $b$
B. $b$ but not $a$
C. $a$ but not $b$
D. Neither $a$ nor $b$
Answer
163.5k+ views
Hint: Given expression is a trigonometric inverse function. We need to apply the inverse formula of tangent in the given expression. After that, we simplify the expression to get the required solution.
Formula Used:
${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$
Complete step by step solution:
The given expression is ${\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{a - b}}} \right)$
Here $x = \dfrac{a}{b}$ and $y = \dfrac{{a + b}}{{a - b}}$
So, using the formula, the given expression becomes
${\tan ^{ - 1}}\left( {\dfrac{{\dfrac{a}{b} + \dfrac{{a + b}}{{a - b}}}}{{1 - \dfrac{a}{b}\left( {\dfrac{{a + b}}{{a - b}}} \right)}}} \right)$
Simplify it.
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{a\left( {a - b} \right) + b\left( {a + b} \right)}}{{b\left( {a - b} \right)}}} \right)}}{{\left( {\dfrac{{b\left( {a - b} \right) - a\left( {a + b} \right)}}{{b\left( {a - b} \right)}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{{a^2} - ab + ab + {b^2}}}{{ab - {b^2}}}} \right)}}{{\left( {\dfrac{{ab - {b^2} - {a^2} - ab}}{{ab - {b^2}}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{{a^2} + {b^2}}}{{ab - {b^2}}}} \right)}}{{\left( {\dfrac{{ - {a^2} - {b^2}}}{{ab - {b^2}}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left( {\dfrac{{{a^2} + {b^2}}}{{ab - {b^2}}} \times \dfrac{{ab - {b^2}}}{{ - {a^2} - {b^2}}}} \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {{a^2} + {b^2}} \right)}}{{ - \left( {{a^2} + {b^2}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left( { - 1} \right)$
$ = - {\tan ^{ - 1}}\left( 1 \right)$
$ = - \dfrac{\pi }{4}$, which is independent of $a$ and $b$
Option ‘D’ is correct
Additional Information:
The inverse functions of the trigonometric functions are the inverse trigonometric functions. They can be used to create an angle from any of the angle's trigonometric ratios because they are specifically the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions.
Note: We need to compare the given function of the tangent inverse with $x$ and $y$. Then we use the inverse function of tangent and simplify. When we simplify the solution, we need to take care about the cancellation process and the property of tangent which is ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x$ . Simplify with the properties and we get the required result.
Formula Used:
${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$
Complete step by step solution:
The given expression is ${\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{a - b}}} \right)$
Here $x = \dfrac{a}{b}$ and $y = \dfrac{{a + b}}{{a - b}}$
So, using the formula, the given expression becomes
${\tan ^{ - 1}}\left( {\dfrac{{\dfrac{a}{b} + \dfrac{{a + b}}{{a - b}}}}{{1 - \dfrac{a}{b}\left( {\dfrac{{a + b}}{{a - b}}} \right)}}} \right)$
Simplify it.
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{a\left( {a - b} \right) + b\left( {a + b} \right)}}{{b\left( {a - b} \right)}}} \right)}}{{\left( {\dfrac{{b\left( {a - b} \right) - a\left( {a + b} \right)}}{{b\left( {a - b} \right)}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{{a^2} - ab + ab + {b^2}}}{{ab - {b^2}}}} \right)}}{{\left( {\dfrac{{ab - {b^2} - {a^2} - ab}}{{ab - {b^2}}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{{a^2} + {b^2}}}{{ab - {b^2}}}} \right)}}{{\left( {\dfrac{{ - {a^2} - {b^2}}}{{ab - {b^2}}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left( {\dfrac{{{a^2} + {b^2}}}{{ab - {b^2}}} \times \dfrac{{ab - {b^2}}}{{ - {a^2} - {b^2}}}} \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {{a^2} + {b^2}} \right)}}{{ - \left( {{a^2} + {b^2}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left( { - 1} \right)$
$ = - {\tan ^{ - 1}}\left( 1 \right)$
$ = - \dfrac{\pi }{4}$, which is independent of $a$ and $b$
Option ‘D’ is correct
Additional Information:
The inverse functions of the trigonometric functions are the inverse trigonometric functions. They can be used to create an angle from any of the angle's trigonometric ratios because they are specifically the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions.
Note: We need to compare the given function of the tangent inverse with $x$ and $y$. Then we use the inverse function of tangent and simplify. When we simplify the solution, we need to take care about the cancellation process and the property of tangent which is ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x$ . Simplify with the properties and we get the required result.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

IIIT JEE Main Cutoff 2024

IIT Full Form

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Main Cut-Off for VNIT Nagpur 2025: Check All Rounds Cutoff Ranks

Other Pages
NEET 2025: All Major Changes in Application Process, Pattern and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025: Important Information and Key Updates

1 Billion in Rupees - Conversion, Solved Examples and FAQs

NEET 2025 Syllabus PDF by NTA (Released)

Important Days In June: What Do You Need To Know
