
If $a > b > 0$, then what is the value of ${\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{a - b}}} \right)$?
A. Both $a$ and $b$
B. $b$ but not $a$
C. $a$ but not $b$
D. Neither $a$ nor $b$
Answer
233.1k+ views
Hint: Given expression is a trigonometric inverse function. We need to apply the inverse formula of tangent in the given expression. After that, we simplify the expression to get the required solution.
Formula Used:
${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$
Complete step by step solution:
The given expression is ${\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{a - b}}} \right)$
Here $x = \dfrac{a}{b}$ and $y = \dfrac{{a + b}}{{a - b}}$
So, using the formula, the given expression becomes
${\tan ^{ - 1}}\left( {\dfrac{{\dfrac{a}{b} + \dfrac{{a + b}}{{a - b}}}}{{1 - \dfrac{a}{b}\left( {\dfrac{{a + b}}{{a - b}}} \right)}}} \right)$
Simplify it.
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{a\left( {a - b} \right) + b\left( {a + b} \right)}}{{b\left( {a - b} \right)}}} \right)}}{{\left( {\dfrac{{b\left( {a - b} \right) - a\left( {a + b} \right)}}{{b\left( {a - b} \right)}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{{a^2} - ab + ab + {b^2}}}{{ab - {b^2}}}} \right)}}{{\left( {\dfrac{{ab - {b^2} - {a^2} - ab}}{{ab - {b^2}}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{{a^2} + {b^2}}}{{ab - {b^2}}}} \right)}}{{\left( {\dfrac{{ - {a^2} - {b^2}}}{{ab - {b^2}}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left( {\dfrac{{{a^2} + {b^2}}}{{ab - {b^2}}} \times \dfrac{{ab - {b^2}}}{{ - {a^2} - {b^2}}}} \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {{a^2} + {b^2}} \right)}}{{ - \left( {{a^2} + {b^2}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left( { - 1} \right)$
$ = - {\tan ^{ - 1}}\left( 1 \right)$
$ = - \dfrac{\pi }{4}$, which is independent of $a$ and $b$
Option ‘D’ is correct
Additional Information:
The inverse functions of the trigonometric functions are the inverse trigonometric functions. They can be used to create an angle from any of the angle's trigonometric ratios because they are specifically the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions.
Note: We need to compare the given function of the tangent inverse with $x$ and $y$. Then we use the inverse function of tangent and simplify. When we simplify the solution, we need to take care about the cancellation process and the property of tangent which is ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x$ . Simplify with the properties and we get the required result.
Formula Used:
${\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$
Complete step by step solution:
The given expression is ${\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{a - b}}} \right)$
Here $x = \dfrac{a}{b}$ and $y = \dfrac{{a + b}}{{a - b}}$
So, using the formula, the given expression becomes
${\tan ^{ - 1}}\left( {\dfrac{{\dfrac{a}{b} + \dfrac{{a + b}}{{a - b}}}}{{1 - \dfrac{a}{b}\left( {\dfrac{{a + b}}{{a - b}}} \right)}}} \right)$
Simplify it.
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{a\left( {a - b} \right) + b\left( {a + b} \right)}}{{b\left( {a - b} \right)}}} \right)}}{{\left( {\dfrac{{b\left( {a - b} \right) - a\left( {a + b} \right)}}{{b\left( {a - b} \right)}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{{a^2} - ab + ab + {b^2}}}{{ab - {b^2}}}} \right)}}{{\left( {\dfrac{{ab - {b^2} - {a^2} - ab}}{{ab - {b^2}}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{{a^2} + {b^2}}}{{ab - {b^2}}}} \right)}}{{\left( {\dfrac{{ - {a^2} - {b^2}}}{{ab - {b^2}}}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left( {\dfrac{{{a^2} + {b^2}}}{{ab - {b^2}}} \times \dfrac{{ab - {b^2}}}{{ - {a^2} - {b^2}}}} \right)$
$ = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {{a^2} + {b^2}} \right)}}{{ - \left( {{a^2} + {b^2}} \right)}}} \right]$
$ = {\tan ^{ - 1}}\left( { - 1} \right)$
$ = - {\tan ^{ - 1}}\left( 1 \right)$
$ = - \dfrac{\pi }{4}$, which is independent of $a$ and $b$
Option ‘D’ is correct
Additional Information:
The inverse functions of the trigonometric functions are the inverse trigonometric functions. They can be used to create an angle from any of the angle's trigonometric ratios because they are specifically the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions.
Note: We need to compare the given function of the tangent inverse with $x$ and $y$. Then we use the inverse function of tangent and simplify. When we simplify the solution, we need to take care about the cancellation process and the property of tangent which is ${\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}x$ . Simplify with the properties and we get the required result.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

