
If a and b be parallel vectors, then [a c b]
A) \[0\]
B) \[1\]
C) \[2\]
D) None of these
Answer
163.2k+ views
Hint: In this question we have to find the scalar triple product of three parallel vectors. Parallel vectors are those vectors which are having the same direction or opposite direction. Parallel vectors are also known as collinear vectors.
In parallel vectors, one vector is a multiple of some other vector.
Formula Used:\(\vec a = \lambda \vec b\)
\(\lambda \)is a scalar quantity.
Complete step by step solution:Given: vector a, b are the parallel vectors.
\(\vec a = \lambda \vec b\)
\(\lambda \)is a scalar quantity.
We know that:
\(\left[ {\vec a\vec b\vec c} \right] = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right)\)
\(\left[ {\vec a\vec b\vec c} \right] = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right)\)
\(\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \lambda \vec b\left( {\vec b \times \vec c} \right)\)
\(\lambda \vec b\left( {\vec b \times \vec c} \right) = \left[ {\lambda \vec b\vec b\vec c} \right]\)
\(\left[ {\lambda \vec b\vec b\vec c} \right] = 0\)
If two vectors in a scalar triple product are the same then the scalar triple product will be zero. \(\left[ {\lambda \vec b\vec b\vec c} \right] = \lambda \left[ {\vec b\vec b\vec c} \right] = \lambda \times 0 = 0\)
\(\left[ {\vec a\vec b\vec c} \right] = \left[ {\vec a\vec c\vec b} \right] = 0\)
Option ‘A’ is correct
Note: Result is a property of parallel vectors. If a question is asked to prove two vectors parallel among the given three collinear vectors then show that the scalar triple vector of three given vectors is zero.
In parallel vectors one vector is a scalar multiple of one of the given vectors.
In parallel vectors, one vector is a multiple of some other vector.
Formula Used:\(\vec a = \lambda \vec b\)
\(\lambda \)is a scalar quantity.
Complete step by step solution:Given: vector a, b are the parallel vectors.
\(\vec a = \lambda \vec b\)
\(\lambda \)is a scalar quantity.
We know that:
\(\left[ {\vec a\vec b\vec c} \right] = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right)\)
\(\left[ {\vec a\vec b\vec c} \right] = \vec a{\rm{.}}\left( {\vec b \times \vec c} \right)\)
\(\vec a{\rm{.}}\left( {\vec b \times \vec c} \right) = \lambda \vec b\left( {\vec b \times \vec c} \right)\)
\(\lambda \vec b\left( {\vec b \times \vec c} \right) = \left[ {\lambda \vec b\vec b\vec c} \right]\)
\(\left[ {\lambda \vec b\vec b\vec c} \right] = 0\)
If two vectors in a scalar triple product are the same then the scalar triple product will be zero. \(\left[ {\lambda \vec b\vec b\vec c} \right] = \lambda \left[ {\vec b\vec b\vec c} \right] = \lambda \times 0 = 0\)
\(\left[ {\vec a\vec b\vec c} \right] = \left[ {\vec a\vec c\vec b} \right] = 0\)
Option ‘A’ is correct
Note: Result is a property of parallel vectors. If a question is asked to prove two vectors parallel among the given three collinear vectors then show that the scalar triple vector of three given vectors is zero.
In parallel vectors one vector is a scalar multiple of one of the given vectors.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
