
If $A$ and $B$ are two matrices such that $A = \left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
2&4
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
6&{ - 4} \\
3&6
\end{array}} \right]$ , then what is the value of $A - B$ ?
A. $\left[ {\begin{array}{*{20}{c}}
{11}&{ - 7} \\
5&{10}
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
{ - 1}&1 \\
{ - 1}&{ - 2}
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
{11}&7 \\
5&{ - 10}
\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{c}}
{12}&{ - 7} \\
5&{ - 10}
\end{array}} \right]$
Answer
163.8k+ views
Hint: Perform Matrix Subtraction and subtract each element of Matrix $B$ from the corresponding element of the matrix $A$ to get the desired value of the matrix which comes as a result of $A - B$.
Complete step by step Solution:
Given are two matrices, $A$ and $B$ such that:
$A = \left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
2&4
\end{array}} \right]$
And
$B = \left[ {\begin{array}{*{20}{c}}
6&{ - 4} \\
3&6
\end{array}} \right]$
Performing Matrix Subtraction,
$A - B = \left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
2&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
6&{ - 4} \\
3&6
\end{array}} \right]$
Subtracting each element of the matrix $B$ from matrix $A$,
$A - B = \left[ {\begin{array}{*{20}{c}}
{5 - 6}&{ - 3 + 4} \\
{2 - 3}&{4 - 6}
\end{array}} \right]$
On simplifying further, we get:
$A - B = \left[ {\begin{array}{*{20}{c}}
{ - 1}&1 \\
{ - 1}&{ - 2}
\end{array}} \right]$
Therefore, the correct option is (B).
Note: The commutative property does not hold for matrix subtraction, that is, $A - B \ne B - A$ . It also does not hold for matrix multiplication, that is, $AB \ne BA$. However, it does hold for matrix addition, that is, $A + B = B + A$.
Complete step by step Solution:
Given are two matrices, $A$ and $B$ such that:
$A = \left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
2&4
\end{array}} \right]$
And
$B = \left[ {\begin{array}{*{20}{c}}
6&{ - 4} \\
3&6
\end{array}} \right]$
Performing Matrix Subtraction,
$A - B = \left[ {\begin{array}{*{20}{c}}
5&{ - 3} \\
2&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
6&{ - 4} \\
3&6
\end{array}} \right]$
Subtracting each element of the matrix $B$ from matrix $A$,
$A - B = \left[ {\begin{array}{*{20}{c}}
{5 - 6}&{ - 3 + 4} \\
{2 - 3}&{4 - 6}
\end{array}} \right]$
On simplifying further, we get:
$A - B = \left[ {\begin{array}{*{20}{c}}
{ - 1}&1 \\
{ - 1}&{ - 2}
\end{array}} \right]$
Therefore, the correct option is (B).
Note: The commutative property does not hold for matrix subtraction, that is, $A - B \ne B - A$ . It also does not hold for matrix multiplication, that is, $AB \ne BA$. However, it does hold for matrix addition, that is, $A + B = B + A$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

JEE Main 2025 Cut-off For NIT Andhra Pradesh

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
