
If \[A\] and \[B\] are square matrices of the same order, then
A. \[{(AB)^\prime } = {A^\prime }{B^\prime }\]
B. \[{(AB)^\prime } = {B^\prime }{A^\prime }\]
C. \[AB = O\] if \[|A| = 0\] or \[|B| = 0\]
D.\[(AB = O)\]; If \[A = I\] or \[B = I\]
Answer
206.7k+ views
Hint:A square matrix is one with no rows that are equal to the number of columns in the matrix. The square matrix has an order of \[n \times n\] where n can be any natural number. We can take two arbitrary square matrices, A and B, and then use matrix multiplication to enlarge the LHS.
Formula Used:
Matrix property:
\[\sum\limits_{r = 1}^n {{a_{jr}}} {b_{ri}}\]
Complete Step-by-Step Solution:We have been provided in the question that,
\[A\] and \[B\] are of the same order of square matrix
And we are to find any of the given possibilities would be true.
Let us assume that, \[A = {\left[ {{a_{ij}}} \right]_{\rm{m}}} \times n\] and \[B = {\left[ {{b_{ij}}} \right]_{n \times p}}\] be two matrices.
Then,
We can consider that \[AB\] is a \[m \times p\] matrix.
Therefore, from the above it is understood that, \[{(AB)^\prime }\] is a \[p \times m\] matrix.
Since, it is known that \[{A^\prime }\] and \[{B^\prime }\] are \[n \times m\] and \[p \times n\] matrices.
Therefore, we can have as \[{B^\prime }{A^\prime }\] is a \[p \times m\] matrix.
Thus, from the above statements we came to a conclusion that the two matrices \[{(AB)^\prime }\] and \[{B^\prime }{A^\prime }\] are of the same order such that \[{\left( {{{(AB)}^\prime }} \right)_{ij}} = {(AB)_{ij}}\]
\[ = \sum\limits_{r = 1}^n {{a_{jr}}} {b_{ri}}\]
\[ = \sum\limits_{r = 1}^n {{b_{ri}}} {a_{jr}}\]
\[ = \sum\limits_{r = 1}^n {{{\left( {{B^\prime }} \right)}_{ir}}} {\left( {{A^\prime }} \right)_{rj}}\]
Thus, the answer would be obvious.
Therefore, if \[A\] and \[B\] are square matrices of the same order, then \[{(AB)^\prime } = {B^\prime }{A^\prime }\]
Hence, the option B is correct
Note: To resolve these types of questions, students should constantly remember the determinant and matrix property, which states that if we have any square matrix of order n, then \[|KA| = {K^n}\left| A \right|\] Many students frequently forget this property of determinants and matrices, and as a result, they are unable to solve the question.
Formula Used:
Matrix property:
\[\sum\limits_{r = 1}^n {{a_{jr}}} {b_{ri}}\]
Complete Step-by-Step Solution:We have been provided in the question that,
\[A\] and \[B\] are of the same order of square matrix
And we are to find any of the given possibilities would be true.
Let us assume that, \[A = {\left[ {{a_{ij}}} \right]_{\rm{m}}} \times n\] and \[B = {\left[ {{b_{ij}}} \right]_{n \times p}}\] be two matrices.
Then,
We can consider that \[AB\] is a \[m \times p\] matrix.
Therefore, from the above it is understood that, \[{(AB)^\prime }\] is a \[p \times m\] matrix.
Since, it is known that \[{A^\prime }\] and \[{B^\prime }\] are \[n \times m\] and \[p \times n\] matrices.
Therefore, we can have as \[{B^\prime }{A^\prime }\] is a \[p \times m\] matrix.
Thus, from the above statements we came to a conclusion that the two matrices \[{(AB)^\prime }\] and \[{B^\prime }{A^\prime }\] are of the same order such that \[{\left( {{{(AB)}^\prime }} \right)_{ij}} = {(AB)_{ij}}\]
\[ = \sum\limits_{r = 1}^n {{a_{jr}}} {b_{ri}}\]
\[ = \sum\limits_{r = 1}^n {{b_{ri}}} {a_{jr}}\]
\[ = \sum\limits_{r = 1}^n {{{\left( {{B^\prime }} \right)}_{ir}}} {\left( {{A^\prime }} \right)_{rj}}\]
Thus, the answer would be obvious.
Therefore, if \[A\] and \[B\] are square matrices of the same order, then \[{(AB)^\prime } = {B^\prime }{A^\prime }\]
Hence, the option B is correct
Note: To resolve these types of questions, students should constantly remember the determinant and matrix property, which states that if we have any square matrix of order n, then \[|KA| = {K^n}\left| A \right|\] Many students frequently forget this property of determinants and matrices, and as a result, they are unable to solve the question.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

Equation of Trajectory in Projectile Motion: Derivation & Proof

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

How to Convert a Galvanometer into an Ammeter or Voltmeter

