
If $2\tan^{ - 1}\left( {\cos x} \right) = \tan^{ - 1}\left( {\csc^{2}x} \right)$, then what is the value of $x$?
A. $\dfrac{\pi }{2}$
B. $\pi $
C. $\dfrac{\pi }{6}$
D. $\dfrac{\pi }{3}$
Answer
162.3k+ views
Hint: First, simplify the left-hand side of the given equation using $2\tan^{ - 1}A$. Then, equate both sides and find a trigonometric equation. After that, solve the trigonometric equation by using the trigonometric identities and trigonometric ratio. In the end, solve the trigonometric equation to reach the required answer.
Formula Used:
$2\tan ^{\:-\:1}A\:=\:\tan ^{\:-\:1}\left(\:\frac{2A}{1\:-\:A^2}\:\right)$
$\cos^{2}A + \sin^{2}A = 1$
$\csc A = \dfrac{1}{{\sin A}}$
Complete step by step solution:
The given inverse trigonometric equation is $2\tan^{ - 1}\left( {\cos x} \right) = \tan^{ - 1}\left( {\csc^{2}x} \right)$.
Let’s simplify the left-hand side of the above equation by using the trigonometric identity $2\tan^{ - 1}A = \tan^{ - 1}\left( {\dfrac{{2A}}{{1 - {A^2}}}} \right)$.
$\tan^{ - 1}\left( {\dfrac{{2\cos x}}{{1 - \cos^{2}x}}} \right) = \tan^{ - 1}\left( {\csc^{2}x} \right)$
Now equate both sides.
We get,
$\frac{2\cos \:x}{1\:-\:\cos ^2x}\:=\:\csc ^2x$
Simplify the above equation using the formulas $\cos^{2}A + \sin^{2}A = 1$, and $\csc A = \dfrac{1}{{\sin A}}$.
$\dfrac{{2\cos x}}{{\cos^{2}x + \sin^{2}x - \cos^{2}x}} = \dfrac{1}{{\sin^{2}x}}$
$ \Rightarrow \dfrac{{2\cos x}}{{\sin^{2}x}} = \dfrac{1}{{\sin^{2}x}}$
$ \Rightarrow 2\cos x = 1$
Divide both sides by 2.
$\cos x = \dfrac{1}{2}$
$ \Rightarrow \cos x = \cos\dfrac{\pi }{3}$ $\left[ {\because \cos\dfrac{\pi }{3} = \dfrac{1}{2}} \right]$
$ \Rightarrow x = \dfrac{\pi }{3}$
Option ‘D’ is correct
Note: The identity $\sin^2x + \cos^2x = 1$ is useful for deriving many other important trigonometric identities too. It all depends on the right hand side of the identity to prove that with which trigonometric term, $\cos^2x$ or $\sin^2x$, the identity is to be used. Always remember trigonometry ratios and identities formulas.
Following are the basic trigonometric ratios:
$\csc A = \dfrac{1}{{\sin A}}$
$\sec A = \dfrac{1}{{\cos A}}$
$\cot A = \dfrac{1}{{\tan A}}$
Formula Used:
$2\tan ^{\:-\:1}A\:=\:\tan ^{\:-\:1}\left(\:\frac{2A}{1\:-\:A^2}\:\right)$
$\cos^{2}A + \sin^{2}A = 1$
$\csc A = \dfrac{1}{{\sin A}}$
Complete step by step solution:
The given inverse trigonometric equation is $2\tan^{ - 1}\left( {\cos x} \right) = \tan^{ - 1}\left( {\csc^{2}x} \right)$.
Let’s simplify the left-hand side of the above equation by using the trigonometric identity $2\tan^{ - 1}A = \tan^{ - 1}\left( {\dfrac{{2A}}{{1 - {A^2}}}} \right)$.
$\tan^{ - 1}\left( {\dfrac{{2\cos x}}{{1 - \cos^{2}x}}} \right) = \tan^{ - 1}\left( {\csc^{2}x} \right)$
Now equate both sides.
We get,
$\frac{2\cos \:x}{1\:-\:\cos ^2x}\:=\:\csc ^2x$
Simplify the above equation using the formulas $\cos^{2}A + \sin^{2}A = 1$, and $\csc A = \dfrac{1}{{\sin A}}$.
$\dfrac{{2\cos x}}{{\cos^{2}x + \sin^{2}x - \cos^{2}x}} = \dfrac{1}{{\sin^{2}x}}$
$ \Rightarrow \dfrac{{2\cos x}}{{\sin^{2}x}} = \dfrac{1}{{\sin^{2}x}}$
$ \Rightarrow 2\cos x = 1$
Divide both sides by 2.
$\cos x = \dfrac{1}{2}$
$ \Rightarrow \cos x = \cos\dfrac{\pi }{3}$ $\left[ {\because \cos\dfrac{\pi }{3} = \dfrac{1}{2}} \right]$
$ \Rightarrow x = \dfrac{\pi }{3}$
Option ‘D’ is correct
Note: The identity $\sin^2x + \cos^2x = 1$ is useful for deriving many other important trigonometric identities too. It all depends on the right hand side of the identity to prove that with which trigonometric term, $\cos^2x$ or $\sin^2x$, the identity is to be used. Always remember trigonometry ratios and identities formulas.
Following are the basic trigonometric ratios:
$\csc A = \dfrac{1}{{\sin A}}$
$\sec A = \dfrac{1}{{\cos A}}$
$\cot A = \dfrac{1}{{\tan A}}$
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
