
If \[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \], then an ordered pair \[\left( {\alpha ,\beta } \right)\] is equal to
A. \[\left( {10,97} \right)\]
B. \[\left( {11,103} \right)\]
C. \[\left( {11,97} \right)\]
D. \[\left( {10,103} \right)\]
Answer
164.1k+ views
Hint: In this question, first by observing we calculate the \[{n^{th}}\] term of the series and then calculate the sum of the series by applying the formula of the sum of squares of natural numbers and the sum of cubes of natural numbers then compare LHS and RHS to find an ordered pair.
Formula used:
1. \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\]
2. \[\sum {{n^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Given series is \[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \]
Now we calculate the sum of series \[\left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right)\]
Now we see that there are \[10\]terms in the above series.
By observation, we see that the \[{n^{th}}\] of a given series is
\[{T_n} = 1 - {\left( {2n} \right)^2}\left( {2n - 1} \right)\]
By simplifying, we get
\[
{T_n} = 1 - 4{n^2}\left( {2n - 1} \right) \\
= 1 - 8{n^3} + 4{n^2} \\
\]
Therefore, the sum of the \[{n^{th}}\] term of the given series is \[{S_n} = \sum\limits_{n = 1}^{10} {{T_n}} \]
So, \[{S_n} = \sum\limits_{n = 1}^{10} {1 - 8{n^3} + 4{n^2}} \]
By splitting the terms, we get
\[
{S_n} = \sum\limits_{n = 1}^{10} {1 - 8{n^3} + 4{n^2}} \\
= \sum\limits_{n = 1}^{10} 1 + \sum\limits_{n = 1}^{10} {\left( { - 8{n^3}} \right)} + \sum\limits_{n = 1}^{10} {4{n^2}} \\
= \sum\limits_{n = 1}^{10} 1 \,\, - 8\sum\limits_{n = 1}^{10} {{n^3}} + 4\sum\limits_{n = 1}^{10} {{n^2}} \,\,...\left( 1 \right) \\
\]
We know that the sum of squares of first n natural numbers is given by \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\] and the sum of cubes of first n natural numbers is given by \[\sum {{n^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] \[{S_n} = n - 8{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\]
Now we know that \[n = 10\]
\[{S_{10}} = 10 - 8{\left( {\dfrac{{10\left( {10 + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{10\left( {10 + 1} \right)\left( {2.10 + 1} \right)}}{6}} \right)\]
Now by simplifying the above equation, we get
\[
{S_{10}} = 10 - 8{\left( {\dfrac{{10\left( {10 + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{10\left( {10 + 1} \right)\left( {2.10 + 1} \right)}}{6}} \right) \\
= 10 - 8{\left( {\dfrac{{10 \times 11}}{2}} \right)^2} + 4\left( {\dfrac{{10 \times 11 \times 21}}{6}} \right) \\
= 10 - 8\dfrac{{{{\left( {10 \times 11} \right)}^2}}}{{{2^2}}} + \dfrac{4}{6}\left( {10 \times 11 \times 21} \right) \\
= 10 - 8\dfrac{{{{\left( {110} \right)}^2}}}{4} + \dfrac{2}{3}\left( {110 \times 21} \right) \\
\]
Further solving, we get
\[
{S_{10}} = 10 - 2 \times 110 \times 110 + 2 \times 110 \times 7 \\
= 10 - 2 \times 110\left( {110 - 7} \right) \\
= 10 - 220\left( {103} \right) \\
\]
Now the original given series is
\[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \]
Now substitute the sum of series in it:
\[
1 + 10 - 220\left( {103} \right) = \alpha - 220\beta \\
11 - 220\left( {103} \right) = \alpha - 220\beta \\
\]
By comparing LHS with RHS, we get
\[\alpha = 11,\,\,\,\beta = 103\]
Hence, option (B) is correct
Note: Students must use the summation formulas while calculating the sum because there are \[10\] terms then take the summation from \[1\] to \[10\]. Furthermore, the students should be able to compute the sum of squares and cubes of the first \[n\] natural numbers.
Formula used:
1. \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\]
2. \[\sum {{n^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Given series is \[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \]
Now we calculate the sum of series \[\left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right)\]
Now we see that there are \[10\]terms in the above series.
By observation, we see that the \[{n^{th}}\] of a given series is
\[{T_n} = 1 - {\left( {2n} \right)^2}\left( {2n - 1} \right)\]
By simplifying, we get
\[
{T_n} = 1 - 4{n^2}\left( {2n - 1} \right) \\
= 1 - 8{n^3} + 4{n^2} \\
\]
Therefore, the sum of the \[{n^{th}}\] term of the given series is \[{S_n} = \sum\limits_{n = 1}^{10} {{T_n}} \]
So, \[{S_n} = \sum\limits_{n = 1}^{10} {1 - 8{n^3} + 4{n^2}} \]
By splitting the terms, we get
\[
{S_n} = \sum\limits_{n = 1}^{10} {1 - 8{n^3} + 4{n^2}} \\
= \sum\limits_{n = 1}^{10} 1 + \sum\limits_{n = 1}^{10} {\left( { - 8{n^3}} \right)} + \sum\limits_{n = 1}^{10} {4{n^2}} \\
= \sum\limits_{n = 1}^{10} 1 \,\, - 8\sum\limits_{n = 1}^{10} {{n^3}} + 4\sum\limits_{n = 1}^{10} {{n^2}} \,\,...\left( 1 \right) \\
\]
We know that the sum of squares of first n natural numbers is given by \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\] and the sum of cubes of first n natural numbers is given by \[\sum {{n^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] \[{S_n} = n - 8{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\]
Now we know that \[n = 10\]
\[{S_{10}} = 10 - 8{\left( {\dfrac{{10\left( {10 + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{10\left( {10 + 1} \right)\left( {2.10 + 1} \right)}}{6}} \right)\]
Now by simplifying the above equation, we get
\[
{S_{10}} = 10 - 8{\left( {\dfrac{{10\left( {10 + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{10\left( {10 + 1} \right)\left( {2.10 + 1} \right)}}{6}} \right) \\
= 10 - 8{\left( {\dfrac{{10 \times 11}}{2}} \right)^2} + 4\left( {\dfrac{{10 \times 11 \times 21}}{6}} \right) \\
= 10 - 8\dfrac{{{{\left( {10 \times 11} \right)}^2}}}{{{2^2}}} + \dfrac{4}{6}\left( {10 \times 11 \times 21} \right) \\
= 10 - 8\dfrac{{{{\left( {110} \right)}^2}}}{4} + \dfrac{2}{3}\left( {110 \times 21} \right) \\
\]
Further solving, we get
\[
{S_{10}} = 10 - 2 \times 110 \times 110 + 2 \times 110 \times 7 \\
= 10 - 2 \times 110\left( {110 - 7} \right) \\
= 10 - 220\left( {103} \right) \\
\]
Now the original given series is
\[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \]
Now substitute the sum of series in it:
\[
1 + 10 - 220\left( {103} \right) = \alpha - 220\beta \\
11 - 220\left( {103} \right) = \alpha - 220\beta \\
\]
By comparing LHS with RHS, we get
\[\alpha = 11,\,\,\,\beta = 103\]
Hence, option (B) is correct
Note: Students must use the summation formulas while calculating the sum because there are \[10\] terms then take the summation from \[1\] to \[10\]. Furthermore, the students should be able to compute the sum of squares and cubes of the first \[n\] natural numbers.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
