
If \[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \], then an ordered pair \[\left( {\alpha ,\beta } \right)\] is equal to
A. \[\left( {10,97} \right)\]
B. \[\left( {11,103} \right)\]
C. \[\left( {11,97} \right)\]
D. \[\left( {10,103} \right)\]
Answer
218.4k+ views
Hint: In this question, first by observing we calculate the \[{n^{th}}\] term of the series and then calculate the sum of the series by applying the formula of the sum of squares of natural numbers and the sum of cubes of natural numbers then compare LHS and RHS to find an ordered pair.
Formula used:
1. \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\]
2. \[\sum {{n^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Given series is \[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \]
Now we calculate the sum of series \[\left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right)\]
Now we see that there are \[10\]terms in the above series.
By observation, we see that the \[{n^{th}}\] of a given series is
\[{T_n} = 1 - {\left( {2n} \right)^2}\left( {2n - 1} \right)\]
By simplifying, we get
\[
{T_n} = 1 - 4{n^2}\left( {2n - 1} \right) \\
= 1 - 8{n^3} + 4{n^2} \\
\]
Therefore, the sum of the \[{n^{th}}\] term of the given series is \[{S_n} = \sum\limits_{n = 1}^{10} {{T_n}} \]
So, \[{S_n} = \sum\limits_{n = 1}^{10} {1 - 8{n^3} + 4{n^2}} \]
By splitting the terms, we get
\[
{S_n} = \sum\limits_{n = 1}^{10} {1 - 8{n^3} + 4{n^2}} \\
= \sum\limits_{n = 1}^{10} 1 + \sum\limits_{n = 1}^{10} {\left( { - 8{n^3}} \right)} + \sum\limits_{n = 1}^{10} {4{n^2}} \\
= \sum\limits_{n = 1}^{10} 1 \,\, - 8\sum\limits_{n = 1}^{10} {{n^3}} + 4\sum\limits_{n = 1}^{10} {{n^2}} \,\,...\left( 1 \right) \\
\]
We know that the sum of squares of first n natural numbers is given by \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\] and the sum of cubes of first n natural numbers is given by \[\sum {{n^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] \[{S_n} = n - 8{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\]
Now we know that \[n = 10\]
\[{S_{10}} = 10 - 8{\left( {\dfrac{{10\left( {10 + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{10\left( {10 + 1} \right)\left( {2.10 + 1} \right)}}{6}} \right)\]
Now by simplifying the above equation, we get
\[
{S_{10}} = 10 - 8{\left( {\dfrac{{10\left( {10 + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{10\left( {10 + 1} \right)\left( {2.10 + 1} \right)}}{6}} \right) \\
= 10 - 8{\left( {\dfrac{{10 \times 11}}{2}} \right)^2} + 4\left( {\dfrac{{10 \times 11 \times 21}}{6}} \right) \\
= 10 - 8\dfrac{{{{\left( {10 \times 11} \right)}^2}}}{{{2^2}}} + \dfrac{4}{6}\left( {10 \times 11 \times 21} \right) \\
= 10 - 8\dfrac{{{{\left( {110} \right)}^2}}}{4} + \dfrac{2}{3}\left( {110 \times 21} \right) \\
\]
Further solving, we get
\[
{S_{10}} = 10 - 2 \times 110 \times 110 + 2 \times 110 \times 7 \\
= 10 - 2 \times 110\left( {110 - 7} \right) \\
= 10 - 220\left( {103} \right) \\
\]
Now the original given series is
\[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \]
Now substitute the sum of series in it:
\[
1 + 10 - 220\left( {103} \right) = \alpha - 220\beta \\
11 - 220\left( {103} \right) = \alpha - 220\beta \\
\]
By comparing LHS with RHS, we get
\[\alpha = 11,\,\,\,\beta = 103\]
Hence, option (B) is correct
Note: Students must use the summation formulas while calculating the sum because there are \[10\] terms then take the summation from \[1\] to \[10\]. Furthermore, the students should be able to compute the sum of squares and cubes of the first \[n\] natural numbers.
Formula used:
1. \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\]
2. \[\sum {{n^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Complete step-by-step solution:
Given series is \[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \]
Now we calculate the sum of series \[\left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right)\]
Now we see that there are \[10\]terms in the above series.
By observation, we see that the \[{n^{th}}\] of a given series is
\[{T_n} = 1 - {\left( {2n} \right)^2}\left( {2n - 1} \right)\]
By simplifying, we get
\[
{T_n} = 1 - 4{n^2}\left( {2n - 1} \right) \\
= 1 - 8{n^3} + 4{n^2} \\
\]
Therefore, the sum of the \[{n^{th}}\] term of the given series is \[{S_n} = \sum\limits_{n = 1}^{10} {{T_n}} \]
So, \[{S_n} = \sum\limits_{n = 1}^{10} {1 - 8{n^3} + 4{n^2}} \]
By splitting the terms, we get
\[
{S_n} = \sum\limits_{n = 1}^{10} {1 - 8{n^3} + 4{n^2}} \\
= \sum\limits_{n = 1}^{10} 1 + \sum\limits_{n = 1}^{10} {\left( { - 8{n^3}} \right)} + \sum\limits_{n = 1}^{10} {4{n^2}} \\
= \sum\limits_{n = 1}^{10} 1 \,\, - 8\sum\limits_{n = 1}^{10} {{n^3}} + 4\sum\limits_{n = 1}^{10} {{n^2}} \,\,...\left( 1 \right) \\
\]
We know that the sum of squares of first n natural numbers is given by \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\] and the sum of cubes of first n natural numbers is given by \[\sum {{n^3}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] \[{S_n} = n - 8{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\]
Now we know that \[n = 10\]
\[{S_{10}} = 10 - 8{\left( {\dfrac{{10\left( {10 + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{10\left( {10 + 1} \right)\left( {2.10 + 1} \right)}}{6}} \right)\]
Now by simplifying the above equation, we get
\[
{S_{10}} = 10 - 8{\left( {\dfrac{{10\left( {10 + 1} \right)}}{2}} \right)^2} + 4\left( {\dfrac{{10\left( {10 + 1} \right)\left( {2.10 + 1} \right)}}{6}} \right) \\
= 10 - 8{\left( {\dfrac{{10 \times 11}}{2}} \right)^2} + 4\left( {\dfrac{{10 \times 11 \times 21}}{6}} \right) \\
= 10 - 8\dfrac{{{{\left( {10 \times 11} \right)}^2}}}{{{2^2}}} + \dfrac{4}{6}\left( {10 \times 11 \times 21} \right) \\
= 10 - 8\dfrac{{{{\left( {110} \right)}^2}}}{4} + \dfrac{2}{3}\left( {110 \times 21} \right) \\
\]
Further solving, we get
\[
{S_{10}} = 10 - 2 \times 110 \times 110 + 2 \times 110 \times 7 \\
= 10 - 2 \times 110\left( {110 - 7} \right) \\
= 10 - 220\left( {103} \right) \\
\]
Now the original given series is
\[1 + \left( {1 - {2^2} \times 1} \right) + \left( {1 - {4^2} \times 3} \right) + \left( {1 - {6^2} \times 5} \right) + ... + \left( {1 - {{20}^2} \times 19} \right) = \alpha - 220\beta \]
Now substitute the sum of series in it:
\[
1 + 10 - 220\left( {103} \right) = \alpha - 220\beta \\
11 - 220\left( {103} \right) = \alpha - 220\beta \\
\]
By comparing LHS with RHS, we get
\[\alpha = 11,\,\,\,\beta = 103\]
Hence, option (B) is correct
Note: Students must use the summation formulas while calculating the sum because there are \[10\] terms then take the summation from \[1\] to \[10\]. Furthermore, the students should be able to compute the sum of squares and cubes of the first \[n\] natural numbers.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

