
If \[0\le x\le \pi \] and \[{{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos }^{2}}x}}=30\] then $x=$
A. $\dfrac{\pi }{6}$
B. $\dfrac{\pi }{2}$
C. $\dfrac{\pi }{4}$
D. $\dfrac{3\pi }{4}$
Answer
162.9k+ views
Hint: To find the value of $x$ we will simplify the given equation using formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$ and property ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$. Using assumption method and then simplification we will derive a quadratic equation from where we will get two factors. Equating both factors to zero we will find all the possible values of $x$. Then we will select the value of $x$ in the interval \[0\le x\le \pi \].
The function sin is positive in second and third quadrant depicted as $\dfrac{\pi }{2}-\theta $ and $\dfrac{\pi }{2}+\theta ,\pi -\theta $.
Formula Used: $1-{{\sin }^{2}}x={{\cos }^{2}}x$
Complete step by step solution: We are given a trigonometric equation \[{{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos }^{2}}x}}=30\] when \[0\le x\le \pi \] and we have to derive the value of $x$.
We will take the given equation and substitute the formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$ in it.
\[{{81}^{{{\sin }^{2}}x}}+{{81}^{1-{{\sin }^{2}}x}}=30\]
We will use the property ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$ in the equation,
\[{{81}^{{{\sin }^{2}}x}}+\dfrac{{{81}^{1}}}{{{81}^{{{\sin }^{2}}x}}}=30\]
Let us assume ${{81}^{{{\sin }^{2}}x}}=z$.
Now the equation will be,
\[\begin{align}
& z+\dfrac{81}{z}=30 \\
& {{z}^{2}}+81=30z \\
& {{z}^{2}}-30z+81=0
\end{align}\]
We will now factorize the derived quadratic equation.
\[\begin{align}
& {{z}^{2}}-30z+81=0 \\
& {{z}^{2}}-27z-3z+81=0 \\
& z(z-27)-3(z-27)=0 \\
& (z-27)(z-3)=0
\end{align}\]
Equating both factors to zero we will get $z=27,3$.
Now we will put back the value of $z$.
$\begin{align}
& {{81}^{{{\sin }^{2}}x}}=27 \\
& {{\left( {{\left( 3 \right)}^{4}} \right)}^{{{\sin }^{2}}x}}={{\left( 3 \right)}^{3}} \\
& {{\left( 3 \right)}^{4{{\sin }^{2}}x}}={{\left( 3 \right)}^{3}} \\
& 4{{\sin }^{2}}x=3 \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$ or $\begin{align}
& {{81}^{{{\sin }^{2}}x}}=3 \\
& {{\left( {{\left( 3 \right)}^{4}} \right)}^{{{\sin }^{2}}x}}={{\left( 3 \right)}^{1}} \\
& {{\left( 3 \right)}^{4{{\sin }^{2}}x}}={{\left( 3 \right)}^{1}} \\
& 4{{\sin }^{2}}x=1 \\
& {{\sin }^{2}}x=\dfrac{1}{4} \\
& \sin x=\pm \dfrac{1}{2}
\end{align}$
As the interval given for $x$ is \[0\le x\le \pi \] which falls in first and second quadrant where the function sin is positive . Now we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. So,
$\sin x=\sin \dfrac{\pi }{6}$ or $\sin x=\sin \dfrac{\pi }{3}$ or $\sin x=-\sin \dfrac{\pi }{6}$ or $\sin x=-\sin \dfrac{\pi }{3}$
The possible values of $x$ are : $x=\dfrac{\pi }{6},\dfrac{\pi }{3},\pi -\dfrac{\pi }{3}=\dfrac{2\pi }{3},\pi -\dfrac{\pi }{6}=\dfrac{5\pi }{6}$.
The only answer present in the given options from the possible solutions of $x$ is $x=\dfrac{\pi }{4}$
Option ‘C’ is correct
Note: Instead of changing cos into sin we can also change the function sin into cos and then derive the value of $x$.
The function sin is positive in second and third quadrant depicted as $\dfrac{\pi }{2}-\theta $ and $\dfrac{\pi }{2}+\theta ,\pi -\theta $.
Formula Used: $1-{{\sin }^{2}}x={{\cos }^{2}}x$
Complete step by step solution: We are given a trigonometric equation \[{{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos }^{2}}x}}=30\] when \[0\le x\le \pi \] and we have to derive the value of $x$.
We will take the given equation and substitute the formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$ in it.
\[{{81}^{{{\sin }^{2}}x}}+{{81}^{1-{{\sin }^{2}}x}}=30\]
We will use the property ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$ in the equation,
\[{{81}^{{{\sin }^{2}}x}}+\dfrac{{{81}^{1}}}{{{81}^{{{\sin }^{2}}x}}}=30\]
Let us assume ${{81}^{{{\sin }^{2}}x}}=z$.
Now the equation will be,
\[\begin{align}
& z+\dfrac{81}{z}=30 \\
& {{z}^{2}}+81=30z \\
& {{z}^{2}}-30z+81=0
\end{align}\]
We will now factorize the derived quadratic equation.
\[\begin{align}
& {{z}^{2}}-30z+81=0 \\
& {{z}^{2}}-27z-3z+81=0 \\
& z(z-27)-3(z-27)=0 \\
& (z-27)(z-3)=0
\end{align}\]
Equating both factors to zero we will get $z=27,3$.
Now we will put back the value of $z$.
$\begin{align}
& {{81}^{{{\sin }^{2}}x}}=27 \\
& {{\left( {{\left( 3 \right)}^{4}} \right)}^{{{\sin }^{2}}x}}={{\left( 3 \right)}^{3}} \\
& {{\left( 3 \right)}^{4{{\sin }^{2}}x}}={{\left( 3 \right)}^{3}} \\
& 4{{\sin }^{2}}x=3 \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$ or $\begin{align}
& {{81}^{{{\sin }^{2}}x}}=3 \\
& {{\left( {{\left( 3 \right)}^{4}} \right)}^{{{\sin }^{2}}x}}={{\left( 3 \right)}^{1}} \\
& {{\left( 3 \right)}^{4{{\sin }^{2}}x}}={{\left( 3 \right)}^{1}} \\
& 4{{\sin }^{2}}x=1 \\
& {{\sin }^{2}}x=\dfrac{1}{4} \\
& \sin x=\pm \dfrac{1}{2}
\end{align}$
As the interval given for $x$ is \[0\le x\le \pi \] which falls in first and second quadrant where the function sin is positive . Now we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. So,
$\sin x=\sin \dfrac{\pi }{6}$ or $\sin x=\sin \dfrac{\pi }{3}$ or $\sin x=-\sin \dfrac{\pi }{6}$ or $\sin x=-\sin \dfrac{\pi }{3}$
The possible values of $x$ are : $x=\dfrac{\pi }{6},\dfrac{\pi }{3},\pi -\dfrac{\pi }{3}=\dfrac{2\pi }{3},\pi -\dfrac{\pi }{6}=\dfrac{5\pi }{6}$.
The only answer present in the given options from the possible solutions of $x$ is $x=\dfrac{\pi }{4}$
Option ‘C’ is correct
Note: Instead of changing cos into sin we can also change the function sin into cos and then derive the value of $x$.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
