
If \[0\le x\le \pi \] and \[{{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos }^{2}}x}}=30\] then $x=$
A. $\dfrac{\pi }{6}$
B. $\dfrac{\pi }{2}$
C. $\dfrac{\pi }{4}$
D. $\dfrac{3\pi }{4}$
Answer
163.5k+ views
Hint: To find the value of $x$ we will simplify the given equation using formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$ and property ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$. Using assumption method and then simplification we will derive a quadratic equation from where we will get two factors. Equating both factors to zero we will find all the possible values of $x$. Then we will select the value of $x$ in the interval \[0\le x\le \pi \].
The function sin is positive in second and third quadrant depicted as $\dfrac{\pi }{2}-\theta $ and $\dfrac{\pi }{2}+\theta ,\pi -\theta $.
Formula Used: $1-{{\sin }^{2}}x={{\cos }^{2}}x$
Complete step by step solution: We are given a trigonometric equation \[{{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos }^{2}}x}}=30\] when \[0\le x\le \pi \] and we have to derive the value of $x$.
We will take the given equation and substitute the formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$ in it.
\[{{81}^{{{\sin }^{2}}x}}+{{81}^{1-{{\sin }^{2}}x}}=30\]
We will use the property ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$ in the equation,
\[{{81}^{{{\sin }^{2}}x}}+\dfrac{{{81}^{1}}}{{{81}^{{{\sin }^{2}}x}}}=30\]
Let us assume ${{81}^{{{\sin }^{2}}x}}=z$.
Now the equation will be,
\[\begin{align}
& z+\dfrac{81}{z}=30 \\
& {{z}^{2}}+81=30z \\
& {{z}^{2}}-30z+81=0
\end{align}\]
We will now factorize the derived quadratic equation.
\[\begin{align}
& {{z}^{2}}-30z+81=0 \\
& {{z}^{2}}-27z-3z+81=0 \\
& z(z-27)-3(z-27)=0 \\
& (z-27)(z-3)=0
\end{align}\]
Equating both factors to zero we will get $z=27,3$.
Now we will put back the value of $z$.
$\begin{align}
& {{81}^{{{\sin }^{2}}x}}=27 \\
& {{\left( {{\left( 3 \right)}^{4}} \right)}^{{{\sin }^{2}}x}}={{\left( 3 \right)}^{3}} \\
& {{\left( 3 \right)}^{4{{\sin }^{2}}x}}={{\left( 3 \right)}^{3}} \\
& 4{{\sin }^{2}}x=3 \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$ or $\begin{align}
& {{81}^{{{\sin }^{2}}x}}=3 \\
& {{\left( {{\left( 3 \right)}^{4}} \right)}^{{{\sin }^{2}}x}}={{\left( 3 \right)}^{1}} \\
& {{\left( 3 \right)}^{4{{\sin }^{2}}x}}={{\left( 3 \right)}^{1}} \\
& 4{{\sin }^{2}}x=1 \\
& {{\sin }^{2}}x=\dfrac{1}{4} \\
& \sin x=\pm \dfrac{1}{2}
\end{align}$
As the interval given for $x$ is \[0\le x\le \pi \] which falls in first and second quadrant where the function sin is positive . Now we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. So,
$\sin x=\sin \dfrac{\pi }{6}$ or $\sin x=\sin \dfrac{\pi }{3}$ or $\sin x=-\sin \dfrac{\pi }{6}$ or $\sin x=-\sin \dfrac{\pi }{3}$
The possible values of $x$ are : $x=\dfrac{\pi }{6},\dfrac{\pi }{3},\pi -\dfrac{\pi }{3}=\dfrac{2\pi }{3},\pi -\dfrac{\pi }{6}=\dfrac{5\pi }{6}$.
The only answer present in the given options from the possible solutions of $x$ is $x=\dfrac{\pi }{4}$
Option ‘C’ is correct
Note: Instead of changing cos into sin we can also change the function sin into cos and then derive the value of $x$.
The function sin is positive in second and third quadrant depicted as $\dfrac{\pi }{2}-\theta $ and $\dfrac{\pi }{2}+\theta ,\pi -\theta $.
Formula Used: $1-{{\sin }^{2}}x={{\cos }^{2}}x$
Complete step by step solution: We are given a trigonometric equation \[{{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos }^{2}}x}}=30\] when \[0\le x\le \pi \] and we have to derive the value of $x$.
We will take the given equation and substitute the formula $1-{{\sin }^{2}}x={{\cos }^{2}}x$ in it.
\[{{81}^{{{\sin }^{2}}x}}+{{81}^{1-{{\sin }^{2}}x}}=30\]
We will use the property ${{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}$ in the equation,
\[{{81}^{{{\sin }^{2}}x}}+\dfrac{{{81}^{1}}}{{{81}^{{{\sin }^{2}}x}}}=30\]
Let us assume ${{81}^{{{\sin }^{2}}x}}=z$.
Now the equation will be,
\[\begin{align}
& z+\dfrac{81}{z}=30 \\
& {{z}^{2}}+81=30z \\
& {{z}^{2}}-30z+81=0
\end{align}\]
We will now factorize the derived quadratic equation.
\[\begin{align}
& {{z}^{2}}-30z+81=0 \\
& {{z}^{2}}-27z-3z+81=0 \\
& z(z-27)-3(z-27)=0 \\
& (z-27)(z-3)=0
\end{align}\]
Equating both factors to zero we will get $z=27,3$.
Now we will put back the value of $z$.
$\begin{align}
& {{81}^{{{\sin }^{2}}x}}=27 \\
& {{\left( {{\left( 3 \right)}^{4}} \right)}^{{{\sin }^{2}}x}}={{\left( 3 \right)}^{3}} \\
& {{\left( 3 \right)}^{4{{\sin }^{2}}x}}={{\left( 3 \right)}^{3}} \\
& 4{{\sin }^{2}}x=3 \\
& {{\sin }^{2}}x=\dfrac{3}{4} \\
& \sin x=\pm \dfrac{\sqrt{3}}{2}
\end{align}$ or $\begin{align}
& {{81}^{{{\sin }^{2}}x}}=3 \\
& {{\left( {{\left( 3 \right)}^{4}} \right)}^{{{\sin }^{2}}x}}={{\left( 3 \right)}^{1}} \\
& {{\left( 3 \right)}^{4{{\sin }^{2}}x}}={{\left( 3 \right)}^{1}} \\
& 4{{\sin }^{2}}x=1 \\
& {{\sin }^{2}}x=\dfrac{1}{4} \\
& \sin x=\pm \dfrac{1}{2}
\end{align}$
As the interval given for $x$ is \[0\le x\le \pi \] which falls in first and second quadrant where the function sin is positive . Now we know that $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$ and $\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}$. So,
$\sin x=\sin \dfrac{\pi }{6}$ or $\sin x=\sin \dfrac{\pi }{3}$ or $\sin x=-\sin \dfrac{\pi }{6}$ or $\sin x=-\sin \dfrac{\pi }{3}$
The possible values of $x$ are : $x=\dfrac{\pi }{6},\dfrac{\pi }{3},\pi -\dfrac{\pi }{3}=\dfrac{2\pi }{3},\pi -\dfrac{\pi }{6}=\dfrac{5\pi }{6}$.
The only answer present in the given options from the possible solutions of $x$ is $x=\dfrac{\pi }{4}$
Option ‘C’ is correct
Note: Instead of changing cos into sin we can also change the function sin into cos and then derive the value of $x$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
