
If \[0 < x,y < \pi \] and \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]then find the value of \[\sin x + \cos y\].
A. \[\dfrac{{1 + \sqrt 3 }}{2}\]
B. \[\dfrac{{1 - \sqrt 3 }}{2}\]
C. \[\dfrac{{\sqrt 3 }}{2}\]
D. \[\dfrac{1}{2}\]
Answer
232.8k+ views
Hint: In this question, for determining the value of \[\sin x + \cos y\], we need to simplify the expression \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]. For this, we need to use trigonometric identities such as \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\] and the half angle formula such as \[\cos A = 2{\cos ^2}\left( {A/2} \right) - 1\]
Complete step by step answer: We know that \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\].
Let us simplify this expression to get the desired result.
Now, consider
\[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Let us us the formula such as \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - \left[ {2{{\cos }^2}\left( {\dfrac{{x + y}}{2}} \right) - 1} \right] = \dfrac{3}{2} \\
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 2{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = \dfrac{1}{2} \\
\]
Multiply by \[2\] to both sides.
Thus, we get
\[
\Rightarrow 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = 1 = {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) \\
\Rightarrow 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) + {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) - 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow {\left( {\cos \left( {\dfrac{{x - y}}{2}} \right) - 2\cos \left( {\dfrac{{x + y}}{2}} \right)} \right)^2} + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow \sin \left( {\dfrac{{x - y}}{2}} \right) = 0 \Rightarrow x = y \\
\]
Also, we get
\[
\cos \left( {\dfrac{{x - y}}{2}} \right) = 2\cos \left( {\dfrac{{x + y}}{2}} \right) \\
\Rightarrow \cos x = \dfrac{1}{2} = \cos y \\
\]
Hence, the value of \[\sin x + \cos y\] can be calculated as
\[
\sin x + \cos y = \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \\
\Rightarrow \sin x + \cos y = \dfrac{{\sqrt 3 + 1}}{2} \\
\]
So, the value of \[\sin x + \cos y\] is \[\dfrac{{1 + \sqrt 3 }}{2}\] if \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Therefore, the option (A) is correct
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Using proper trigonometric identities is necessary for solving trigonometric problems as this makes them simple.
Complete step by step answer: We know that \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\].
Let us simplify this expression to get the desired result.
Now, consider
\[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Let us us the formula such as \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - \left[ {2{{\cos }^2}\left( {\dfrac{{x + y}}{2}} \right) - 1} \right] = \dfrac{3}{2} \\
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 2{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = \dfrac{1}{2} \\
\]
Multiply by \[2\] to both sides.
Thus, we get
\[
\Rightarrow 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = 1 = {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) \\
\Rightarrow 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) + {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) - 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow {\left( {\cos \left( {\dfrac{{x - y}}{2}} \right) - 2\cos \left( {\dfrac{{x + y}}{2}} \right)} \right)^2} + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow \sin \left( {\dfrac{{x - y}}{2}} \right) = 0 \Rightarrow x = y \\
\]
Also, we get
\[
\cos \left( {\dfrac{{x - y}}{2}} \right) = 2\cos \left( {\dfrac{{x + y}}{2}} \right) \\
\Rightarrow \cos x = \dfrac{1}{2} = \cos y \\
\]
Hence, the value of \[\sin x + \cos y\] can be calculated as
\[
\sin x + \cos y = \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \\
\Rightarrow \sin x + \cos y = \dfrac{{\sqrt 3 + 1}}{2} \\
\]
So, the value of \[\sin x + \cos y\] is \[\dfrac{{1 + \sqrt 3 }}{2}\] if \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Therefore, the option (A) is correct
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Using proper trigonometric identities is necessary for solving trigonometric problems as this makes them simple.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

