
If \[0 < x,y < \pi \] and \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]then find the value of \[\sin x + \cos y\].
A. \[\dfrac{{1 + \sqrt 3 }}{2}\]
B. \[\dfrac{{1 - \sqrt 3 }}{2}\]
C. \[\dfrac{{\sqrt 3 }}{2}\]
D. \[\dfrac{1}{2}\]
Answer
162.6k+ views
Hint: In this question, for determining the value of \[\sin x + \cos y\], we need to simplify the expression \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]. For this, we need to use trigonometric identities such as \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\] and the half angle formula such as \[\cos A = 2{\cos ^2}\left( {A/2} \right) - 1\]
Complete step by step answer: We know that \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\].
Let us simplify this expression to get the desired result.
Now, consider
\[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Let us us the formula such as \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - \left[ {2{{\cos }^2}\left( {\dfrac{{x + y}}{2}} \right) - 1} \right] = \dfrac{3}{2} \\
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 2{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = \dfrac{1}{2} \\
\]
Multiply by \[2\] to both sides.
Thus, we get
\[
\Rightarrow 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = 1 = {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) \\
\Rightarrow 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) + {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) - 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow {\left( {\cos \left( {\dfrac{{x - y}}{2}} \right) - 2\cos \left( {\dfrac{{x + y}}{2}} \right)} \right)^2} + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow \sin \left( {\dfrac{{x - y}}{2}} \right) = 0 \Rightarrow x = y \\
\]
Also, we get
\[
\cos \left( {\dfrac{{x - y}}{2}} \right) = 2\cos \left( {\dfrac{{x + y}}{2}} \right) \\
\Rightarrow \cos x = \dfrac{1}{2} = \cos y \\
\]
Hence, the value of \[\sin x + \cos y\] can be calculated as
\[
\sin x + \cos y = \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \\
\Rightarrow \sin x + \cos y = \dfrac{{\sqrt 3 + 1}}{2} \\
\]
So, the value of \[\sin x + \cos y\] is \[\dfrac{{1 + \sqrt 3 }}{2}\] if \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Therefore, the option (A) is correct
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Using proper trigonometric identities is necessary for solving trigonometric problems as this makes them simple.
Complete step by step answer: We know that \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\].
Let us simplify this expression to get the desired result.
Now, consider
\[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Let us us the formula such as \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - \left[ {2{{\cos }^2}\left( {\dfrac{{x + y}}{2}} \right) - 1} \right] = \dfrac{3}{2} \\
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 2{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = \dfrac{1}{2} \\
\]
Multiply by \[2\] to both sides.
Thus, we get
\[
\Rightarrow 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = 1 = {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) \\
\Rightarrow 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) + {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) - 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow {\left( {\cos \left( {\dfrac{{x - y}}{2}} \right) - 2\cos \left( {\dfrac{{x + y}}{2}} \right)} \right)^2} + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow \sin \left( {\dfrac{{x - y}}{2}} \right) = 0 \Rightarrow x = y \\
\]
Also, we get
\[
\cos \left( {\dfrac{{x - y}}{2}} \right) = 2\cos \left( {\dfrac{{x + y}}{2}} \right) \\
\Rightarrow \cos x = \dfrac{1}{2} = \cos y \\
\]
Hence, the value of \[\sin x + \cos y\] can be calculated as
\[
\sin x + \cos y = \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \\
\Rightarrow \sin x + \cos y = \dfrac{{\sqrt 3 + 1}}{2} \\
\]
So, the value of \[\sin x + \cos y\] is \[\dfrac{{1 + \sqrt 3 }}{2}\] if \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Therefore, the option (A) is correct
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Using proper trigonometric identities is necessary for solving trigonometric problems as this makes them simple.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
