
If \[0 < x,y < \pi \] and \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]then find the value of \[\sin x + \cos y\].
A. \[\dfrac{{1 + \sqrt 3 }}{2}\]
B. \[\dfrac{{1 - \sqrt 3 }}{2}\]
C. \[\dfrac{{\sqrt 3 }}{2}\]
D. \[\dfrac{1}{2}\]
Answer
218.4k+ views
Hint: In this question, for determining the value of \[\sin x + \cos y\], we need to simplify the expression \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]. For this, we need to use trigonometric identities such as \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\] and the half angle formula such as \[\cos A = 2{\cos ^2}\left( {A/2} \right) - 1\]
Complete step by step answer: We know that \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\].
Let us simplify this expression to get the desired result.
Now, consider
\[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Let us us the formula such as \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - \left[ {2{{\cos }^2}\left( {\dfrac{{x + y}}{2}} \right) - 1} \right] = \dfrac{3}{2} \\
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 2{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = \dfrac{1}{2} \\
\]
Multiply by \[2\] to both sides.
Thus, we get
\[
\Rightarrow 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = 1 = {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) \\
\Rightarrow 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) + {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) - 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow {\left( {\cos \left( {\dfrac{{x - y}}{2}} \right) - 2\cos \left( {\dfrac{{x + y}}{2}} \right)} \right)^2} + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow \sin \left( {\dfrac{{x - y}}{2}} \right) = 0 \Rightarrow x = y \\
\]
Also, we get
\[
\cos \left( {\dfrac{{x - y}}{2}} \right) = 2\cos \left( {\dfrac{{x + y}}{2}} \right) \\
\Rightarrow \cos x = \dfrac{1}{2} = \cos y \\
\]
Hence, the value of \[\sin x + \cos y\] can be calculated as
\[
\sin x + \cos y = \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \\
\Rightarrow \sin x + \cos y = \dfrac{{\sqrt 3 + 1}}{2} \\
\]
So, the value of \[\sin x + \cos y\] is \[\dfrac{{1 + \sqrt 3 }}{2}\] if \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Therefore, the option (A) is correct
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Using proper trigonometric identities is necessary for solving trigonometric problems as this makes them simple.
Complete step by step answer: We know that \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\].
Let us simplify this expression to get the desired result.
Now, consider
\[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Let us us the formula such as \[\cos \left( A \right) + \cos \left( B \right) = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)\]
\[
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - \left[ {2{{\cos }^2}\left( {\dfrac{{x + y}}{2}} \right) - 1} \right] = \dfrac{3}{2} \\
\Rightarrow 2\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 2{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = \dfrac{1}{2} \\
\]
Multiply by \[2\] to both sides.
Thus, we get
\[
\Rightarrow 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) - 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) = 1 = {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) \\
\Rightarrow 4{\cos ^2}\left( {\dfrac{{x + y}}{2}} \right) + {\cos ^2}\left( {\dfrac{{x - y}}{2}} \right) - 4\cos \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow {\left( {\cos \left( {\dfrac{{x - y}}{2}} \right) - 2\cos \left( {\dfrac{{x + y}}{2}} \right)} \right)^2} + {\sin ^2}\left( {\dfrac{{x - y}}{2}} \right) = 0 \\
\Rightarrow \sin \left( {\dfrac{{x - y}}{2}} \right) = 0 \Rightarrow x = y \\
\]
Also, we get
\[
\cos \left( {\dfrac{{x - y}}{2}} \right) = 2\cos \left( {\dfrac{{x + y}}{2}} \right) \\
\Rightarrow \cos x = \dfrac{1}{2} = \cos y \\
\]
Hence, the value of \[\sin x + \cos y\] can be calculated as
\[
\sin x + \cos y = \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{2} \\
\Rightarrow \sin x + \cos y = \dfrac{{\sqrt 3 + 1}}{2} \\
\]
So, the value of \[\sin x + \cos y\] is \[\dfrac{{1 + \sqrt 3 }}{2}\] if \[\cos x + \cos y - \cos \left( {x + y} \right) = \dfrac{3}{2}\]
Therefore, the option (A) is correct
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Using proper trigonometric identities is necessary for solving trigonometric problems as this makes them simple.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

