
How many grams of copper will get replaced in \[{\rm{2}}\,\,{\rm{L}}\]of \[{\rm{CuS}}{{\rm{O}}_4}\] solution having molarity \[{\rm{1}}{\rm{.50}}\,\,{\rm{M}}\], if it is made to react with \[{\rm{54}}\,{\rm{ g}}\] of aluminium? (At. mass of \[{\rm{Cu}}\,\,{\rm{ = }}\,\,{\rm{63}}{\rm{.5}}\]and \[{\rm{Al}}\,\,{\rm{ = }}\,\,{\rm{27}}{\rm{.0}}\])
Answer
162.6k+ views
Hint: In mass-volume relationship problems, mass or volume of one of the reactants or products is calculated from the mass or volume of other substances.
Complete Step by Step Solution:
Molarity (M) may be defined as the number of moles of solute dissolved per litre of the solution.
Mathematically, \[{\rm{molarity}}\,{\rm{(M)}}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{solute}}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\]
The units of molarity are moles per litre \[{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}\]or moles per cubic decimetre \[{\rm{(mold}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}\]. The symbol used to designate molar concentration is \[{\rm{M}}\].
The balanced molecular equation for the reaction of \[{\rm{CuS}}{{\rm{O}}_4}\]solution and aluminium may be represented as shown below:
\[{\rm{3CuS}}{{\rm{O}}_{\rm{4}}}\,{\rm{ + }}\,\,{\rm{2Al}}\,\, \to \,\,{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{(S}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{3}}}\,\,{\rm{ + }}\,\,{\rm{3Cu}}\]
As per given data,
Volume of \[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{2}}\,\,{\rm{L}}\]
\[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{1}}{\rm{.50}}\,\,{\rm{M}}\,\,{\rm{or}}\,\,{\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}}\]
Find the moles of \[{\rm{CuS}}{{\rm{O}}_4}\]by using the molarity relationship as:
\[\begin{array}{l}{\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} \times \,{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}} \times 2\,\,{\rm{L}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{3}}\,\,{\rm{mol}}\end{array}\]
The relationship between moles (n), mass (m), and molar mass (M) is as shown below:
\[{\rm{moles}}\,{\rm{(n) = }}\dfrac{{{\rm{mass(m)}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}}}\]
moles of \[{\rm{CuS}}{{\rm{O}}_4}\,\] \[ = {\rm{3}}\,\,{\rm{mol}}\](calculated)
Molar mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]is known to be \[{\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\].
Find the mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]as shown below:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}{\rm{ = }}\dfrac{{{\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} \times {\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,\,{\rm{3}}\,\,{\rm{mol}} \times {\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,478.8\,\,{\rm{g}}\end{array}\]
This means that \[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]reacts with \[{\rm{54}}\,{\rm{ g}}\]of aluminium (\[{\rm{Al}}\,\])
Molar mass of copper (\[{\rm{Cu}}\]) is known to be \[{\rm{63}}{\rm{.5}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
Also,
\[{\rm{159}}{\rm{.609}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]contain \[{\rm{63}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
So, \[{\rm{1}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}}\,{\rm{g}}\,\,{\rm{Cu}}\]
\[\therefore \]\[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}} \times 478.8\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,{\rm{ = }}\,{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,\]
Hence, \[{\rm{190}}{\rm{.5}}\]grams of copper get replaced.
Therefore, the answer is \[{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
Note: The only disadvantage of this concentration unit i.e., molarity is that its value changes with the change in temperature. It must be remembered that mass of one mole of atom is equal to the gram atomic mass of the element, mass of one mole of molecule is equal to gram molecular mass of the substance and mass of one mole of formula units in case of an ionic compound is equal to gram formula mass of the ionic compound.
Complete Step by Step Solution:
Molarity (M) may be defined as the number of moles of solute dissolved per litre of the solution.
Mathematically, \[{\rm{molarity}}\,{\rm{(M)}}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{solute}}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\]
The units of molarity are moles per litre \[{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}\]or moles per cubic decimetre \[{\rm{(mold}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}\]. The symbol used to designate molar concentration is \[{\rm{M}}\].
The balanced molecular equation for the reaction of \[{\rm{CuS}}{{\rm{O}}_4}\]solution and aluminium may be represented as shown below:
\[{\rm{3CuS}}{{\rm{O}}_{\rm{4}}}\,{\rm{ + }}\,\,{\rm{2Al}}\,\, \to \,\,{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{(S}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{3}}}\,\,{\rm{ + }}\,\,{\rm{3Cu}}\]
As per given data,
Volume of \[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{2}}\,\,{\rm{L}}\]
\[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{1}}{\rm{.50}}\,\,{\rm{M}}\,\,{\rm{or}}\,\,{\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}}\]
Find the moles of \[{\rm{CuS}}{{\rm{O}}_4}\]by using the molarity relationship as:
\[\begin{array}{l}{\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} \times \,{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}} \times 2\,\,{\rm{L}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{3}}\,\,{\rm{mol}}\end{array}\]
The relationship between moles (n), mass (m), and molar mass (M) is as shown below:
\[{\rm{moles}}\,{\rm{(n) = }}\dfrac{{{\rm{mass(m)}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}}}\]
moles of \[{\rm{CuS}}{{\rm{O}}_4}\,\] \[ = {\rm{3}}\,\,{\rm{mol}}\](calculated)
Molar mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]is known to be \[{\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\].
Find the mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]as shown below:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}{\rm{ = }}\dfrac{{{\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} \times {\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,\,{\rm{3}}\,\,{\rm{mol}} \times {\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,478.8\,\,{\rm{g}}\end{array}\]
This means that \[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]reacts with \[{\rm{54}}\,{\rm{ g}}\]of aluminium (\[{\rm{Al}}\,\])
Molar mass of copper (\[{\rm{Cu}}\]) is known to be \[{\rm{63}}{\rm{.5}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
Also,
\[{\rm{159}}{\rm{.609}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]contain \[{\rm{63}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
So, \[{\rm{1}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}}\,{\rm{g}}\,\,{\rm{Cu}}\]
\[\therefore \]\[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}} \times 478.8\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,{\rm{ = }}\,{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,\]
Hence, \[{\rm{190}}{\rm{.5}}\]grams of copper get replaced.
Therefore, the answer is \[{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
Note: The only disadvantage of this concentration unit i.e., molarity is that its value changes with the change in temperature. It must be remembered that mass of one mole of atom is equal to the gram atomic mass of the element, mass of one mole of molecule is equal to gram molecular mass of the substance and mass of one mole of formula units in case of an ionic compound is equal to gram formula mass of the ionic compound.
Recently Updated Pages
Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

The specific heat of metal is 067 Jg Its equivalent class 11 chemistry JEE_Main

The increasing order of a specific charge to mass ratio class 11 chemistry JEE_Main

Which one of the following is used for making shoe class 11 chemistry JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
