
How many grams of copper will get replaced in \[{\rm{2}}\,\,{\rm{L}}\]of \[{\rm{CuS}}{{\rm{O}}_4}\] solution having molarity \[{\rm{1}}{\rm{.50}}\,\,{\rm{M}}\], if it is made to react with \[{\rm{54}}\,{\rm{ g}}\] of aluminium? (At. mass of \[{\rm{Cu}}\,\,{\rm{ = }}\,\,{\rm{63}}{\rm{.5}}\]and \[{\rm{Al}}\,\,{\rm{ = }}\,\,{\rm{27}}{\rm{.0}}\])
Answer
221.1k+ views
Hint: In mass-volume relationship problems, mass or volume of one of the reactants or products is calculated from the mass or volume of other substances.
Complete Step by Step Solution:
Molarity (M) may be defined as the number of moles of solute dissolved per litre of the solution.
Mathematically, \[{\rm{molarity}}\,{\rm{(M)}}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{solute}}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\]
The units of molarity are moles per litre \[{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}\]or moles per cubic decimetre \[{\rm{(mold}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}\]. The symbol used to designate molar concentration is \[{\rm{M}}\].
The balanced molecular equation for the reaction of \[{\rm{CuS}}{{\rm{O}}_4}\]solution and aluminium may be represented as shown below:
\[{\rm{3CuS}}{{\rm{O}}_{\rm{4}}}\,{\rm{ + }}\,\,{\rm{2Al}}\,\, \to \,\,{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{(S}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{3}}}\,\,{\rm{ + }}\,\,{\rm{3Cu}}\]
As per given data,
Volume of \[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{2}}\,\,{\rm{L}}\]
\[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{1}}{\rm{.50}}\,\,{\rm{M}}\,\,{\rm{or}}\,\,{\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}}\]
Find the moles of \[{\rm{CuS}}{{\rm{O}}_4}\]by using the molarity relationship as:
\[\begin{array}{l}{\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} \times \,{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}} \times 2\,\,{\rm{L}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{3}}\,\,{\rm{mol}}\end{array}\]
The relationship between moles (n), mass (m), and molar mass (M) is as shown below:
\[{\rm{moles}}\,{\rm{(n) = }}\dfrac{{{\rm{mass(m)}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}}}\]
moles of \[{\rm{CuS}}{{\rm{O}}_4}\,\] \[ = {\rm{3}}\,\,{\rm{mol}}\](calculated)
Molar mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]is known to be \[{\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\].
Find the mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]as shown below:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}{\rm{ = }}\dfrac{{{\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} \times {\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,\,{\rm{3}}\,\,{\rm{mol}} \times {\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,478.8\,\,{\rm{g}}\end{array}\]
This means that \[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]reacts with \[{\rm{54}}\,{\rm{ g}}\]of aluminium (\[{\rm{Al}}\,\])
Molar mass of copper (\[{\rm{Cu}}\]) is known to be \[{\rm{63}}{\rm{.5}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
Also,
\[{\rm{159}}{\rm{.609}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]contain \[{\rm{63}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
So, \[{\rm{1}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}}\,{\rm{g}}\,\,{\rm{Cu}}\]
\[\therefore \]\[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}} \times 478.8\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,{\rm{ = }}\,{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,\]
Hence, \[{\rm{190}}{\rm{.5}}\]grams of copper get replaced.
Therefore, the answer is \[{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
Note: The only disadvantage of this concentration unit i.e., molarity is that its value changes with the change in temperature. It must be remembered that mass of one mole of atom is equal to the gram atomic mass of the element, mass of one mole of molecule is equal to gram molecular mass of the substance and mass of one mole of formula units in case of an ionic compound is equal to gram formula mass of the ionic compound.
Complete Step by Step Solution:
Molarity (M) may be defined as the number of moles of solute dissolved per litre of the solution.
Mathematically, \[{\rm{molarity}}\,{\rm{(M)}}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{solute}}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\]
The units of molarity are moles per litre \[{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}\]or moles per cubic decimetre \[{\rm{(mold}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}\]. The symbol used to designate molar concentration is \[{\rm{M}}\].
The balanced molecular equation for the reaction of \[{\rm{CuS}}{{\rm{O}}_4}\]solution and aluminium may be represented as shown below:
\[{\rm{3CuS}}{{\rm{O}}_{\rm{4}}}\,{\rm{ + }}\,\,{\rm{2Al}}\,\, \to \,\,{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{(S}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{3}}}\,\,{\rm{ + }}\,\,{\rm{3Cu}}\]
As per given data,
Volume of \[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{2}}\,\,{\rm{L}}\]
\[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{1}}{\rm{.50}}\,\,{\rm{M}}\,\,{\rm{or}}\,\,{\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}}\]
Find the moles of \[{\rm{CuS}}{{\rm{O}}_4}\]by using the molarity relationship as:
\[\begin{array}{l}{\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} \times \,{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}} \times 2\,\,{\rm{L}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{3}}\,\,{\rm{mol}}\end{array}\]
The relationship between moles (n), mass (m), and molar mass (M) is as shown below:
\[{\rm{moles}}\,{\rm{(n) = }}\dfrac{{{\rm{mass(m)}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}}}\]
moles of \[{\rm{CuS}}{{\rm{O}}_4}\,\] \[ = {\rm{3}}\,\,{\rm{mol}}\](calculated)
Molar mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]is known to be \[{\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\].
Find the mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]as shown below:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}{\rm{ = }}\dfrac{{{\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} \times {\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,\,{\rm{3}}\,\,{\rm{mol}} \times {\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,478.8\,\,{\rm{g}}\end{array}\]
This means that \[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]reacts with \[{\rm{54}}\,{\rm{ g}}\]of aluminium (\[{\rm{Al}}\,\])
Molar mass of copper (\[{\rm{Cu}}\]) is known to be \[{\rm{63}}{\rm{.5}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
Also,
\[{\rm{159}}{\rm{.609}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]contain \[{\rm{63}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
So, \[{\rm{1}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}}\,{\rm{g}}\,\,{\rm{Cu}}\]
\[\therefore \]\[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}} \times 478.8\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,{\rm{ = }}\,{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,\]
Hence, \[{\rm{190}}{\rm{.5}}\]grams of copper get replaced.
Therefore, the answer is \[{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
Note: The only disadvantage of this concentration unit i.e., molarity is that its value changes with the change in temperature. It must be remembered that mass of one mole of atom is equal to the gram atomic mass of the element, mass of one mole of molecule is equal to gram molecular mass of the substance and mass of one mole of formula units in case of an ionic compound is equal to gram formula mass of the ionic compound.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

