
How many grams of copper will get replaced in \[{\rm{2}}\,\,{\rm{L}}\]of \[{\rm{CuS}}{{\rm{O}}_4}\] solution having molarity \[{\rm{1}}{\rm{.50}}\,\,{\rm{M}}\], if it is made to react with \[{\rm{54}}\,{\rm{ g}}\] of aluminium? (At. mass of \[{\rm{Cu}}\,\,{\rm{ = }}\,\,{\rm{63}}{\rm{.5}}\]and \[{\rm{Al}}\,\,{\rm{ = }}\,\,{\rm{27}}{\rm{.0}}\])
Answer
233.1k+ views
Hint: In mass-volume relationship problems, mass or volume of one of the reactants or products is calculated from the mass or volume of other substances.
Complete Step by Step Solution:
Molarity (M) may be defined as the number of moles of solute dissolved per litre of the solution.
Mathematically, \[{\rm{molarity}}\,{\rm{(M)}}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{solute}}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\]
The units of molarity are moles per litre \[{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}\]or moles per cubic decimetre \[{\rm{(mold}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}\]. The symbol used to designate molar concentration is \[{\rm{M}}\].
The balanced molecular equation for the reaction of \[{\rm{CuS}}{{\rm{O}}_4}\]solution and aluminium may be represented as shown below:
\[{\rm{3CuS}}{{\rm{O}}_{\rm{4}}}\,{\rm{ + }}\,\,{\rm{2Al}}\,\, \to \,\,{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{(S}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{3}}}\,\,{\rm{ + }}\,\,{\rm{3Cu}}\]
As per given data,
Volume of \[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{2}}\,\,{\rm{L}}\]
\[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{1}}{\rm{.50}}\,\,{\rm{M}}\,\,{\rm{or}}\,\,{\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}}\]
Find the moles of \[{\rm{CuS}}{{\rm{O}}_4}\]by using the molarity relationship as:
\[\begin{array}{l}{\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} \times \,{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}} \times 2\,\,{\rm{L}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{3}}\,\,{\rm{mol}}\end{array}\]
The relationship between moles (n), mass (m), and molar mass (M) is as shown below:
\[{\rm{moles}}\,{\rm{(n) = }}\dfrac{{{\rm{mass(m)}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}}}\]
moles of \[{\rm{CuS}}{{\rm{O}}_4}\,\] \[ = {\rm{3}}\,\,{\rm{mol}}\](calculated)
Molar mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]is known to be \[{\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\].
Find the mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]as shown below:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}{\rm{ = }}\dfrac{{{\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} \times {\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,\,{\rm{3}}\,\,{\rm{mol}} \times {\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,478.8\,\,{\rm{g}}\end{array}\]
This means that \[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]reacts with \[{\rm{54}}\,{\rm{ g}}\]of aluminium (\[{\rm{Al}}\,\])
Molar mass of copper (\[{\rm{Cu}}\]) is known to be \[{\rm{63}}{\rm{.5}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
Also,
\[{\rm{159}}{\rm{.609}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]contain \[{\rm{63}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
So, \[{\rm{1}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}}\,{\rm{g}}\,\,{\rm{Cu}}\]
\[\therefore \]\[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}} \times 478.8\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,{\rm{ = }}\,{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,\]
Hence, \[{\rm{190}}{\rm{.5}}\]grams of copper get replaced.
Therefore, the answer is \[{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
Note: The only disadvantage of this concentration unit i.e., molarity is that its value changes with the change in temperature. It must be remembered that mass of one mole of atom is equal to the gram atomic mass of the element, mass of one mole of molecule is equal to gram molecular mass of the substance and mass of one mole of formula units in case of an ionic compound is equal to gram formula mass of the ionic compound.
Complete Step by Step Solution:
Molarity (M) may be defined as the number of moles of solute dissolved per litre of the solution.
Mathematically, \[{\rm{molarity}}\,{\rm{(M)}}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{solute}}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\]
The units of molarity are moles per litre \[{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}\]or moles per cubic decimetre \[{\rm{(mold}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}\]. The symbol used to designate molar concentration is \[{\rm{M}}\].
The balanced molecular equation for the reaction of \[{\rm{CuS}}{{\rm{O}}_4}\]solution and aluminium may be represented as shown below:
\[{\rm{3CuS}}{{\rm{O}}_{\rm{4}}}\,{\rm{ + }}\,\,{\rm{2Al}}\,\, \to \,\,{\rm{A}}{{\rm{l}}_{\rm{2}}}{{\rm{(S}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{3}}}\,\,{\rm{ + }}\,\,{\rm{3Cu}}\]
As per given data,
Volume of \[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{2}}\,\,{\rm{L}}\]
\[{\rm{CuS}}{{\rm{O}}_4}\, = \,{\rm{1}}{\rm{.50}}\,\,{\rm{M}}\,\,{\rm{or}}\,\,{\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}}\]
Find the moles of \[{\rm{CuS}}{{\rm{O}}_4}\]by using the molarity relationship as:
\[\begin{array}{l}{\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{molarity}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} \times \,{\rm{volume}}\,\,{\rm{of}}\,\,\,{\rm{CuS}}{{\rm{O}}_4}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{1}}{\rm{.50}}\,\,\dfrac{{{\rm{mol}}}}{{\rm{L}}} \times 2\,\,{\rm{L}}\\ \Rightarrow {\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_4} = {\rm{3}}\,\,{\rm{mol}}\end{array}\]
The relationship between moles (n), mass (m), and molar mass (M) is as shown below:
\[{\rm{moles}}\,{\rm{(n) = }}\dfrac{{{\rm{mass(m)}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}}}\]
moles of \[{\rm{CuS}}{{\rm{O}}_4}\,\] \[ = {\rm{3}}\,\,{\rm{mol}}\](calculated)
Molar mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]is known to be \[{\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\].
Find the mass of \[{\rm{CuS}}{{\rm{O}}_4}\,\]as shown below:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}{\rm{ = }}\dfrac{{{\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} \times {\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,\,{\rm{3}}\,\,{\rm{mol}} \times {\rm{159}}{\rm{.609}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\\ \Rightarrow {\rm{mass(m)}}\,\,{\rm{of}}\,\,{\rm{CuS}}{{\rm{O}}_{\rm{4}}} = \,478.8\,\,{\rm{g}}\end{array}\]
This means that \[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]reacts with \[{\rm{54}}\,{\rm{ g}}\]of aluminium (\[{\rm{Al}}\,\])
Molar mass of copper (\[{\rm{Cu}}\]) is known to be \[{\rm{63}}{\rm{.5}}\,\,\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
Also,
\[{\rm{159}}{\rm{.609}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]contain \[{\rm{63}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
So, \[{\rm{1}}\]\[{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}}\,{\rm{g}}\,\,{\rm{Cu}}\]
\[\therefore \]\[478.8\,\,{\rm{g}}\]\[{\rm{CuS}}{{\rm{O}}_4}\,\]will contain \[{\rm{ = }}\dfrac{{{\rm{63}}{\rm{.5}}\,\,}}{{{\rm{159}}{\rm{.609}}}} \times 478.8\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,{\rm{ = }}\,{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\,\,\]
Hence, \[{\rm{190}}{\rm{.5}}\]grams of copper get replaced.
Therefore, the answer is \[{\rm{190}}{\rm{.5}}\,\,{\rm{g}}\,\,{\rm{Cu}}\]
Note: The only disadvantage of this concentration unit i.e., molarity is that its value changes with the change in temperature. It must be remembered that mass of one mole of atom is equal to the gram atomic mass of the element, mass of one mole of molecule is equal to gram molecular mass of the substance and mass of one mole of formula units in case of an ionic compound is equal to gram formula mass of the ionic compound.
Recently Updated Pages
Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

