
Given \[a + d > b + c\] where \[a,b,c,d\] are real numbers, then
A. \[a,b,c,d\] are in A.P.
B. \[\frac{1}{a},\frac{1}{b},\frac{1}{c},\frac{1}{d}\] are in A.P.
C. \[(a + b),(b + c),(c + d),(a + d)\] are in A.P.
D. \[\frac{1}{{a + b}},\frac{1}{{b + c}},\frac{1}{{c + d}},\frac{1}{{a + d}}\] are in A.P.
Answer
215.4k+ views
Hint
Both rational and irrational numbers are considered to be real numbers. The integer 0 is a rational number and a real number, regardless of whether it is considered a natural number (as well as an algebraic number and a complex number). Since 0 is neither positive nor negative, it is typically shown in the middle of a number line.
Real numbers contain rational, irrational, and integer numbers, which is their primary distinction from the other types of numbers. The term "not real" or "non-real" refers to imaginary and unreal numbers. The number line cannot display non-real numbers.
Formula use:
If \[a,b,c\] are in AP
\[(b - a) = (c - b)\]
If \[a,b,c\] are in HP
\[\frac{1}{a} + \frac{1}{c} = \frac{2}{b}\]
Complete step-by-step solution
The given equation is \[a + d > b + c\]
This equation can be written as
\[ = > a + b + c + d > 2b + 2c\]
After taking two as a common factor, the equation is written as
\[ = > \frac{{a + c}}{2} + \frac{{b + d}}{2} > b + c\]
So, \[\frac{{a + c}}{2}\]\[ > b\] and \[\frac{{b + d}}{2}\]\[ > \]\[c\]
Hence, the points on series is \[A > H\]
b is determined as the Harmonic progression of a and c and the value of this series’ A, M is
\[\frac{{a + c}}{2}\]
c is determined as the Harmonic progression of b and d and the value of this series’ A, M is
\[\frac{{b + d}}{2}\]
So, the series of H.P has \[a,b,c,d\] and \[\frac{1}{a},\frac{1}{b},\frac{1}{c},\frac{1}{d}\]are in the series of A.P.
Therefore, the correct option is B.
Note
It appears that the majority of other roots are equally illogical. In addition, the constants e and are irrational. Pi is an irrational number since it cannot be stated as a simple fraction. Every seemingly irrational number is real, as we are aware. Pi is thus a true number. Pi is an irrational number since it cannot be stated as a simple fraction. Every seemingly irrational number is real, as we are aware. Pi is thus a true number.
Both rational and irrational numbers are considered to be real numbers. The integer 0 is a rational number and a real number, regardless of whether it is considered a natural number (as well as an algebraic number and a complex number). Since 0 is neither positive nor negative, it is typically shown in the middle of a number line.
Real numbers contain rational, irrational, and integer numbers, which is their primary distinction from the other types of numbers. The term "not real" or "non-real" refers to imaginary and unreal numbers. The number line cannot display non-real numbers.
Formula use:
If \[a,b,c\] are in AP
\[(b - a) = (c - b)\]
If \[a,b,c\] are in HP
\[\frac{1}{a} + \frac{1}{c} = \frac{2}{b}\]
Complete step-by-step solution
The given equation is \[a + d > b + c\]
This equation can be written as
\[ = > a + b + c + d > 2b + 2c\]
After taking two as a common factor, the equation is written as
\[ = > \frac{{a + c}}{2} + \frac{{b + d}}{2} > b + c\]
So, \[\frac{{a + c}}{2}\]\[ > b\] and \[\frac{{b + d}}{2}\]\[ > \]\[c\]
Hence, the points on series is \[A > H\]
b is determined as the Harmonic progression of a and c and the value of this series’ A, M is
\[\frac{{a + c}}{2}\]
c is determined as the Harmonic progression of b and d and the value of this series’ A, M is
\[\frac{{b + d}}{2}\]
So, the series of H.P has \[a,b,c,d\] and \[\frac{1}{a},\frac{1}{b},\frac{1}{c},\frac{1}{d}\]are in the series of A.P.
Therefore, the correct option is B.
Note
It appears that the majority of other roots are equally illogical. In addition, the constants e and are irrational. Pi is an irrational number since it cannot be stated as a simple fraction. Every seemingly irrational number is real, as we are aware. Pi is thus a true number. Pi is an irrational number since it cannot be stated as a simple fraction. Every seemingly irrational number is real, as we are aware. Pi is thus a true number.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

