
Given \[a + d > b + c\] where \[a,b,c,d\] are real numbers, then
A. \[a,b,c,d\] are in A.P.
B. \[\frac{1}{a},\frac{1}{b},\frac{1}{c},\frac{1}{d}\] are in A.P.
C. \[(a + b),(b + c),(c + d),(a + d)\] are in A.P.
D. \[\frac{1}{{a + b}},\frac{1}{{b + c}},\frac{1}{{c + d}},\frac{1}{{a + d}}\] are in A.P.
Answer
232.2k+ views
Hint
Both rational and irrational numbers are considered to be real numbers. The integer 0 is a rational number and a real number, regardless of whether it is considered a natural number (as well as an algebraic number and a complex number). Since 0 is neither positive nor negative, it is typically shown in the middle of a number line.
Real numbers contain rational, irrational, and integer numbers, which is their primary distinction from the other types of numbers. The term "not real" or "non-real" refers to imaginary and unreal numbers. The number line cannot display non-real numbers.
Formula use:
If \[a,b,c\] are in AP
\[(b - a) = (c - b)\]
If \[a,b,c\] are in HP
\[\frac{1}{a} + \frac{1}{c} = \frac{2}{b}\]
Complete step-by-step solution
The given equation is \[a + d > b + c\]
This equation can be written as
\[ = > a + b + c + d > 2b + 2c\]
After taking two as a common factor, the equation is written as
\[ = > \frac{{a + c}}{2} + \frac{{b + d}}{2} > b + c\]
So, \[\frac{{a + c}}{2}\]\[ > b\] and \[\frac{{b + d}}{2}\]\[ > \]\[c\]
Hence, the points on series is \[A > H\]
b is determined as the Harmonic progression of a and c and the value of this series’ A, M is
\[\frac{{a + c}}{2}\]
c is determined as the Harmonic progression of b and d and the value of this series’ A, M is
\[\frac{{b + d}}{2}\]
So, the series of H.P has \[a,b,c,d\] and \[\frac{1}{a},\frac{1}{b},\frac{1}{c},\frac{1}{d}\]are in the series of A.P.
Therefore, the correct option is B.
Note
It appears that the majority of other roots are equally illogical. In addition, the constants e and are irrational. Pi is an irrational number since it cannot be stated as a simple fraction. Every seemingly irrational number is real, as we are aware. Pi is thus a true number. Pi is an irrational number since it cannot be stated as a simple fraction. Every seemingly irrational number is real, as we are aware. Pi is thus a true number.
Both rational and irrational numbers are considered to be real numbers. The integer 0 is a rational number and a real number, regardless of whether it is considered a natural number (as well as an algebraic number and a complex number). Since 0 is neither positive nor negative, it is typically shown in the middle of a number line.
Real numbers contain rational, irrational, and integer numbers, which is their primary distinction from the other types of numbers. The term "not real" or "non-real" refers to imaginary and unreal numbers. The number line cannot display non-real numbers.
Formula use:
If \[a,b,c\] are in AP
\[(b - a) = (c - b)\]
If \[a,b,c\] are in HP
\[\frac{1}{a} + \frac{1}{c} = \frac{2}{b}\]
Complete step-by-step solution
The given equation is \[a + d > b + c\]
This equation can be written as
\[ = > a + b + c + d > 2b + 2c\]
After taking two as a common factor, the equation is written as
\[ = > \frac{{a + c}}{2} + \frac{{b + d}}{2} > b + c\]
So, \[\frac{{a + c}}{2}\]\[ > b\] and \[\frac{{b + d}}{2}\]\[ > \]\[c\]
Hence, the points on series is \[A > H\]
b is determined as the Harmonic progression of a and c and the value of this series’ A, M is
\[\frac{{a + c}}{2}\]
c is determined as the Harmonic progression of b and d and the value of this series’ A, M is
\[\frac{{b + d}}{2}\]
So, the series of H.P has \[a,b,c,d\] and \[\frac{1}{a},\frac{1}{b},\frac{1}{c},\frac{1}{d}\]are in the series of A.P.
Therefore, the correct option is B.
Note
It appears that the majority of other roots are equally illogical. In addition, the constants e and are irrational. Pi is an irrational number since it cannot be stated as a simple fraction. Every seemingly irrational number is real, as we are aware. Pi is thus a true number. Pi is an irrational number since it cannot be stated as a simple fraction. Every seemingly irrational number is real, as we are aware. Pi is thus a true number.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

