
how many generators are there in an infinite cyclic group.
A.1
B.3
C.2
D. Infinite
Answer
217.2k+ views
Hint: Remember the definition of a cyclic group and take an example to obtain the required answer.
Complete step by step solution:
The definition of a cyclic group is: A group that contains a cyclic subgroup is known as cyclic subgroup.
The infinite cyclic group \[\left( {\mathbb{Z}, + } \right)\] has two generators 1 and -1.
Therefore, the correct option is C.
Additional information:
A cyclic group or monogenous group is a group that is generated by a single element in group theory, a branch of abstract algebra. An Abelian group is included in every cyclic group.A cyclic group has only cyclic subgroups.The order of each member in a finite cyclic group G that has order n divides n. If and only if an infinite group is finitely generated and has exactly two ends, then it is essentially cyclic. A group produced by a single element is known as a cyclic group. As a result, every other element of the group can be expressed as a power of an element called g, for example. The group's generator is this element g.
Note: Sometime students write the whole proof that an infinite cyclic group has two generators, but here the question is only to identify how many generators will be in a cyclic group the proof is not needed here. So, please go through the demand of the question and then answer the question properly.
Complete step by step solution:
The definition of a cyclic group is: A group that contains a cyclic subgroup is known as cyclic subgroup.
The infinite cyclic group \[\left( {\mathbb{Z}, + } \right)\] has two generators 1 and -1.
Therefore, the correct option is C.
Additional information:
A cyclic group or monogenous group is a group that is generated by a single element in group theory, a branch of abstract algebra. An Abelian group is included in every cyclic group.A cyclic group has only cyclic subgroups.The order of each member in a finite cyclic group G that has order n divides n. If and only if an infinite group is finitely generated and has exactly two ends, then it is essentially cyclic. A group produced by a single element is known as a cyclic group. As a result, every other element of the group can be expressed as a power of an element called g, for example. The group's generator is this element g.
Note: Sometime students write the whole proof that an infinite cyclic group has two generators, but here the question is only to identify how many generators will be in a cyclic group the proof is not needed here. So, please go through the demand of the question and then answer the question properly.
Recently Updated Pages
Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Electrostatic Potential and Capacitance Explained

EMF and Internal Resistance of a Cell: Definitions & Formula

Entropy in Thermodynamic Processes: Explained Simply

Equivalent Capacitance Explained: Formulas, Series & Parallel

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

