
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
A. \[80\]
B. \[20\]
C. \[-20\]
D. \[37\]
Answer
163.5k+ views
Hint: In this question, we are to find the given integral. Here the function in the given integral is provided with two different intervals. According to the interval, the function is to be selected. This is achieved by subdividing the integrals into two parts with two different intervals in such a way that we get the given function. I.e., The interval [1,4] is subdivided into [1,2] and (2,4]. Thus, by applying these intervals for the given integral, we get the required value.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on [a, b]. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function$f(x)$ over [a, b].
I.e., $\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$(lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0 if f(x)$ is an odd function
5)$\begin{align} \int_{0}^{2a}{f(x)dx}=2 \int_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\ \text{ }=0\text{ if }f(2a-x)=-f(x) \end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{1}^{4}{f(x)dx}\]
And the given function is
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
So, the given integral is
\[\begin{align} & I=\int\limits_{1}^{4}{f(x)dx}=\int\limits_{1}^{2}{f(x)dx+\int\limits_{2}^{4}{f(x)dx}} \ \\ \Rightarrow I=\int\limits_{1}^{2}{(4x+3)dx+\int\limits_{2}^{4}{(3x+5)dx}} \end{align}\]
We know that \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\]
Then,
\[\begin{align} \int\limits_{1}^{4}{f(x)dx=}\left[ \dfrac{4{{x}^{2}}}{2}+3x \right]_{1}^{2}+\left[ \dfrac{3{{x}^{2}}}{2}+5x \right]_{2}^{4} \\ =\left[ 2{{(2)}^{2}}+3(2) \right]-\left[ 2{{(1)}^{2}}+3(1) \right]+\left[ \dfrac{3{{(4)}^{2}}}{2}+5(4) \right]-\left[ \dfrac{3{{(2)}^{2}}}{2}+5(2) \right] \\ =14-5+44-16 \\ =37 \end{align}\]
Option ‘D’ is correct
Note: Here we need to remember that, the given function is continuous at the given intervals. Thus, we can directly substitute the respective function at the respective interval. We need to remember this, as per the intervals the function has to be chosen. After that, the function should be integrated within those limits. On evaluating those, we get the value of the integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on [a, b]. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function$f(x)$ over [a, b].
I.e., $\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$(lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0 if f(x)$ is an odd function
5)$\begin{align} \int_{0}^{2a}{f(x)dx}=2 \int_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\ \text{ }=0\text{ if }f(2a-x)=-f(x) \end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{1}^{4}{f(x)dx}\]
And the given function is
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
So, the given integral is
\[\begin{align} & I=\int\limits_{1}^{4}{f(x)dx}=\int\limits_{1}^{2}{f(x)dx+\int\limits_{2}^{4}{f(x)dx}} \ \\ \Rightarrow I=\int\limits_{1}^{2}{(4x+3)dx+\int\limits_{2}^{4}{(3x+5)dx}} \end{align}\]
We know that \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\]
Then,
\[\begin{align} \int\limits_{1}^{4}{f(x)dx=}\left[ \dfrac{4{{x}^{2}}}{2}+3x \right]_{1}^{2}+\left[ \dfrac{3{{x}^{2}}}{2}+5x \right]_{2}^{4} \\ =\left[ 2{{(2)}^{2}}+3(2) \right]-\left[ 2{{(1)}^{2}}+3(1) \right]+\left[ \dfrac{3{{(4)}^{2}}}{2}+5(4) \right]-\left[ \dfrac{3{{(2)}^{2}}}{2}+5(2) \right] \\ =14-5+44-16 \\ =37 \end{align}\]
Option ‘D’ is correct
Note: Here we need to remember that, the given function is continuous at the given intervals. Thus, we can directly substitute the respective function at the respective interval. We need to remember this, as per the intervals the function has to be chosen. After that, the function should be integrated within those limits. On evaluating those, we get the value of the integral.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
