
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
A. \[80\]
B. \[20\]
C. \[-20\]
D. \[37\]
Answer
218.7k+ views
Hint: In this question, we are to find the given integral. Here the function in the given integral is provided with two different intervals. According to the interval, the function is to be selected. This is achieved by subdividing the integrals into two parts with two different intervals in such a way that we get the given function. I.e., The interval [1,4] is subdivided into [1,2] and (2,4]. Thus, by applying these intervals for the given integral, we get the required value.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on [a, b]. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function$f(x)$ over [a, b].
I.e., $\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$(lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0 if f(x)$ is an odd function
5)$\begin{align} \int_{0}^{2a}{f(x)dx}=2 \int_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\ \text{ }=0\text{ if }f(2a-x)=-f(x) \end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{1}^{4}{f(x)dx}\]
And the given function is
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
So, the given integral is
\[\begin{align} & I=\int\limits_{1}^{4}{f(x)dx}=\int\limits_{1}^{2}{f(x)dx+\int\limits_{2}^{4}{f(x)dx}} \ \\ \Rightarrow I=\int\limits_{1}^{2}{(4x+3)dx+\int\limits_{2}^{4}{(3x+5)dx}} \end{align}\]
We know that \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\]
Then,
\[\begin{align} \int\limits_{1}^{4}{f(x)dx=}\left[ \dfrac{4{{x}^{2}}}{2}+3x \right]_{1}^{2}+\left[ \dfrac{3{{x}^{2}}}{2}+5x \right]_{2}^{4} \\ =\left[ 2{{(2)}^{2}}+3(2) \right]-\left[ 2{{(1)}^{2}}+3(1) \right]+\left[ \dfrac{3{{(4)}^{2}}}{2}+5(4) \right]-\left[ \dfrac{3{{(2)}^{2}}}{2}+5(2) \right] \\ =14-5+44-16 \\ =37 \end{align}\]
Option ‘D’ is correct
Note: Here we need to remember that, the given function is continuous at the given intervals. Thus, we can directly substitute the respective function at the respective interval. We need to remember this, as per the intervals the function has to be chosen. After that, the function should be integrated within those limits. On evaluating those, we get the value of the integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on [a, b]. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function$f(x)$ over [a, b].
I.e., $\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$(lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0 if f(x)$ is an odd function
5)$\begin{align} \int_{0}^{2a}{f(x)dx}=2 \int_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\ \text{ }=0\text{ if }f(2a-x)=-f(x) \end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{1}^{4}{f(x)dx}\]
And the given function is
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
So, the given integral is
\[\begin{align} & I=\int\limits_{1}^{4}{f(x)dx}=\int\limits_{1}^{2}{f(x)dx+\int\limits_{2}^{4}{f(x)dx}} \ \\ \Rightarrow I=\int\limits_{1}^{2}{(4x+3)dx+\int\limits_{2}^{4}{(3x+5)dx}} \end{align}\]
We know that \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\]
Then,
\[\begin{align} \int\limits_{1}^{4}{f(x)dx=}\left[ \dfrac{4{{x}^{2}}}{2}+3x \right]_{1}^{2}+\left[ \dfrac{3{{x}^{2}}}{2}+5x \right]_{2}^{4} \\ =\left[ 2{{(2)}^{2}}+3(2) \right]-\left[ 2{{(1)}^{2}}+3(1) \right]+\left[ \dfrac{3{{(4)}^{2}}}{2}+5(4) \right]-\left[ \dfrac{3{{(2)}^{2}}}{2}+5(2) \right] \\ =14-5+44-16 \\ =37 \end{align}\]
Option ‘D’ is correct
Note: Here we need to remember that, the given function is continuous at the given intervals. Thus, we can directly substitute the respective function at the respective interval. We need to remember this, as per the intervals the function has to be chosen. After that, the function should be integrated within those limits. On evaluating those, we get the value of the integral.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

