
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
A. \[80\]
B. \[20\]
C. \[-20\]
D. \[37\]
Answer
233.4k+ views
Hint: In this question, we are to find the given integral. Here the function in the given integral is provided with two different intervals. According to the interval, the function is to be selected. This is achieved by subdividing the integrals into two parts with two different intervals in such a way that we get the given function. I.e., The interval [1,4] is subdivided into [1,2] and (2,4]. Thus, by applying these intervals for the given integral, we get the required value.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on [a, b]. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function$f(x)$ over [a, b].
I.e., $\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$(lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0 if f(x)$ is an odd function
5)$\begin{align} \int_{0}^{2a}{f(x)dx}=2 \int_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\ \text{ }=0\text{ if }f(2a-x)=-f(x) \end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{1}^{4}{f(x)dx}\]
And the given function is
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
So, the given integral is
\[\begin{align} & I=\int\limits_{1}^{4}{f(x)dx}=\int\limits_{1}^{2}{f(x)dx+\int\limits_{2}^{4}{f(x)dx}} \ \\ \Rightarrow I=\int\limits_{1}^{2}{(4x+3)dx+\int\limits_{2}^{4}{(3x+5)dx}} \end{align}\]
We know that \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\]
Then,
\[\begin{align} \int\limits_{1}^{4}{f(x)dx=}\left[ \dfrac{4{{x}^{2}}}{2}+3x \right]_{1}^{2}+\left[ \dfrac{3{{x}^{2}}}{2}+5x \right]_{2}^{4} \\ =\left[ 2{{(2)}^{2}}+3(2) \right]-\left[ 2{{(1)}^{2}}+3(1) \right]+\left[ \dfrac{3{{(4)}^{2}}}{2}+5(4) \right]-\left[ \dfrac{3{{(2)}^{2}}}{2}+5(2) \right] \\ =14-5+44-16 \\ =37 \end{align}\]
Option ‘D’ is correct
Note: Here we need to remember that, the given function is continuous at the given intervals. Thus, we can directly substitute the respective function at the respective interval. We need to remember this, as per the intervals the function has to be chosen. After that, the function should be integrated within those limits. On evaluating those, we get the value of the integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on [a, b]. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function$f(x)$ over [a, b].
I.e., $\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$(lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0 if f(x)$ is an odd function
5)$\begin{align} \int_{0}^{2a}{f(x)dx}=2 \int_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\ \text{ }=0\text{ if }f(2a-x)=-f(x) \end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{1}^{4}{f(x)dx}\]
And the given function is
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
So, the given integral is
\[\begin{align} & I=\int\limits_{1}^{4}{f(x)dx}=\int\limits_{1}^{2}{f(x)dx+\int\limits_{2}^{4}{f(x)dx}} \ \\ \Rightarrow I=\int\limits_{1}^{2}{(4x+3)dx+\int\limits_{2}^{4}{(3x+5)dx}} \end{align}\]
We know that \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\]
Then,
\[\begin{align} \int\limits_{1}^{4}{f(x)dx=}\left[ \dfrac{4{{x}^{2}}}{2}+3x \right]_{1}^{2}+\left[ \dfrac{3{{x}^{2}}}{2}+5x \right]_{2}^{4} \\ =\left[ 2{{(2)}^{2}}+3(2) \right]-\left[ 2{{(1)}^{2}}+3(1) \right]+\left[ \dfrac{3{{(4)}^{2}}}{2}+5(4) \right]-\left[ \dfrac{3{{(2)}^{2}}}{2}+5(2) \right] \\ =14-5+44-16 \\ =37 \end{align}\]
Option ‘D’ is correct
Note: Here we need to remember that, the given function is continuous at the given intervals. Thus, we can directly substitute the respective function at the respective interval. We need to remember this, as per the intervals the function has to be chosen. After that, the function should be integrated within those limits. On evaluating those, we get the value of the integral.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

