
For the reaction ${{H}_{{{2}_{(g)}}}}+{{I}_{{{2}_{(g)}}}}2H{{I}_{(g)}}$at 721K the value of equilibrium constant ${{K}_{c}}$is 50. When the equilibrium concentration of both is 0.5M, value of \[{{K}_{p}}\] under the same conditions will be:
(A) 0.002
(B) 0.2
(C) 50.0
(D) $\dfrac{50}{RT}$
Answer
162.3k+ views
Hint: In order to solve this question, we will proceed by understanding that ${{K}_{c}}$is the equilibrium constant in terms of concentration whereas \[{{K}_{p}}\] is the equilibrium constant in terms of partial pressure. We’ll make use of the formula \[{{K}_{p}}={{K}_{c}}{{(RT)}^{\Delta {{n}_{g}}}}\]
Formula used: \[{{K}_{p}}={{K}_{c}}{{(RT)}^{\Delta {{n}_{g}}}}\] where \[{{K}_{p}}\] is the equilibrium constant in terms of partial pressure of reactant and product at equilibrium and ${{K}_{c}}$ is the equilibrium constant in terms of equilibrium concentration of product and reactant. R is the universal gas constant, T is the temperature and $\Delta {{n}_{g}}$is the difference of the number of moles of gases in product and reactant.
Complete Step by Step Solution:
According to the question the required chemical reaction at equilibrium is given as follows:
${{H}_{{{2}_{(g)}}}}+{{I}_{{{2}_{(g)}}}}2H{{I}_{(g)}}$
which shows that hydrogen gas and iodine gas are combining to form 2 moles of hydrogen iodide.
Using the formula:
\[{{K}_{p}}={{K}_{c}}{{(RT)}^{\Delta {{n}_{g}}}}\]
Given in the question:${{K}_{c}}=50$, T=721K and we know R is the universal gas constant.
To find the value of $\Delta {{n}_{g}}$ we will subtract the number of gaseous moles in reactant from the number of gaseous moles in the product.
$\Delta {{n}_{g}}=2$(no. of moles of $HI$) $-1$(no. of mole of ${{H}_{2}}$) $-1$(no. of moles of ${{I}_{2}}$)
Therefore, $\Delta {{n}_{g}}=2-1-1=0$
Putting the respective values in formula:
\[{{K}_{p}}={{K}_{c}}{{(RT)}^{\Delta {{n}_{g}}}}\]
${{K}_{p}}=50{{(RT)}^{0}}$
And we know anything raise to power zero is one
Therefore, \[{{K}_{p}}=50\]
Hence, the correct option is C. 50.0
Note: The most important thing to remember here is the relation between ${{K}_{p}}$ and ${{K}_{c}}$. The other thing to look for is the value of $\Delta {{n}_{g}}$, while calculating its value always consider the moles of gaseous molecules only on the both sides. Any liquid or solid molecule will not be considered for the calculation of the value of $\Delta {{n}_{g}}$.
Formula used: \[{{K}_{p}}={{K}_{c}}{{(RT)}^{\Delta {{n}_{g}}}}\] where \[{{K}_{p}}\] is the equilibrium constant in terms of partial pressure of reactant and product at equilibrium and ${{K}_{c}}$ is the equilibrium constant in terms of equilibrium concentration of product and reactant. R is the universal gas constant, T is the temperature and $\Delta {{n}_{g}}$is the difference of the number of moles of gases in product and reactant.
Complete Step by Step Solution:
According to the question the required chemical reaction at equilibrium is given as follows:
${{H}_{{{2}_{(g)}}}}+{{I}_{{{2}_{(g)}}}}2H{{I}_{(g)}}$
which shows that hydrogen gas and iodine gas are combining to form 2 moles of hydrogen iodide.
Using the formula:
\[{{K}_{p}}={{K}_{c}}{{(RT)}^{\Delta {{n}_{g}}}}\]
Given in the question:${{K}_{c}}=50$, T=721K and we know R is the universal gas constant.
To find the value of $\Delta {{n}_{g}}$ we will subtract the number of gaseous moles in reactant from the number of gaseous moles in the product.
$\Delta {{n}_{g}}=2$(no. of moles of $HI$) $-1$(no. of mole of ${{H}_{2}}$) $-1$(no. of moles of ${{I}_{2}}$)
Therefore, $\Delta {{n}_{g}}=2-1-1=0$
Putting the respective values in formula:
\[{{K}_{p}}={{K}_{c}}{{(RT)}^{\Delta {{n}_{g}}}}\]
${{K}_{p}}=50{{(RT)}^{0}}$
And we know anything raise to power zero is one
Therefore, \[{{K}_{p}}=50\]
Hence, the correct option is C. 50.0
Note: The most important thing to remember here is the relation between ${{K}_{p}}$ and ${{K}_{c}}$. The other thing to look for is the value of $\Delta {{n}_{g}}$, while calculating its value always consider the moles of gaseous molecules only on the both sides. Any liquid or solid molecule will not be considered for the calculation of the value of $\Delta {{n}_{g}}$.
Recently Updated Pages
Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

The specific heat of metal is 067 Jg Its equivalent class 11 chemistry JEE_Main

The increasing order of a specific charge to mass ratio class 11 chemistry JEE_Main

Which one of the following is used for making shoe class 11 chemistry JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE
