
For given uniform square lamina ABCD, whose centre is O, which of the following is correct?

(A) $\sqrt {{{21}_{AC}}} = {1_{EF}}$
(B) ${I_{AD}} = {31_{EF}}$
(C) ${I_{AD}} = {I_{EF}}$
(D) ${I_{AC}} = \sqrt {{{21}_{EF}}}$
Answer
136.8k+ views
Hint The moment of inertia is defined to be a quantity which expresses a body’s tendency to the resist angular acceleration, which is known as the sum of the products of the mass of each of the particle in the body with the square of the distance from the axis of rotation. Based on this concept we can solve this question.
Complete step by step answer:
We know that the moment of inertia of a square lamina about an axis perpendicular to its plane = $\dfrac{{m{l^2}}}{6}$
Therefore, by perpendicular axes theorem,
${21_{EF}} = \dfrac{{m{l^2}}}{6} \to {I_{EF}} = \dfrac{{m{l^2}}}{{12}}$
Similarly,
${21_{AC}} = \dfrac{{m{l^2}}}{6} \to {I_{AC}} = \dfrac{{m{l^2}}}{{12}}$
${I_{AC}} = {I_{EF}}$
Hence, the correct answer is Option A.
Note The concept of moment of inertia is important because all the physics problems that involve all the masses in the rotational motion. It will be used to calculate the angular momentum and allows us to explain. This explanation is done using the conservation of the angular momentum. If we increase the radius of the axis of rotation, the moment of inertia increases. This will result in the lowering of the speed of rotation.
Complete step by step answer:
We know that the moment of inertia of a square lamina about an axis perpendicular to its plane = $\dfrac{{m{l^2}}}{6}$
Therefore, by perpendicular axes theorem,
${21_{EF}} = \dfrac{{m{l^2}}}{6} \to {I_{EF}} = \dfrac{{m{l^2}}}{{12}}$
Similarly,
${21_{AC}} = \dfrac{{m{l^2}}}{6} \to {I_{AC}} = \dfrac{{m{l^2}}}{{12}}$
${I_{AC}} = {I_{EF}}$
Hence, the correct answer is Option A.
Note The concept of moment of inertia is important because all the physics problems that involve all the masses in the rotational motion. It will be used to calculate the angular momentum and allows us to explain. This explanation is done using the conservation of the angular momentum. If we increase the radius of the axis of rotation, the moment of inertia increases. This will result in the lowering of the speed of rotation.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2025 Question Paper PDFs with Solutions Free Download

Difference Between Density and Volume: JEE Main 2024

Difference Between Series and Parallel Circuits: JEE Main 2024

Difference Between Analog and Digital: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
