
For given uniform square lamina ABCD, whose centre is O, which of the following is correct?

(A) $\sqrt {{{21}_{AC}}} = {1_{EF}}$
(B) ${I_{AD}} = {31_{EF}}$
(C) ${I_{AD}} = {I_{EF}}$
(D) ${I_{AC}} = \sqrt {{{21}_{EF}}}$
Answer
233.1k+ views
Hint The moment of inertia is defined to be a quantity which expresses a body’s tendency to the resist angular acceleration, which is known as the sum of the products of the mass of each of the particle in the body with the square of the distance from the axis of rotation. Based on this concept we can solve this question.
Complete step by step answer:
We know that the moment of inertia of a square lamina about an axis perpendicular to its plane = $\dfrac{{m{l^2}}}{6}$
Therefore, by perpendicular axes theorem,
${21_{EF}} = \dfrac{{m{l^2}}}{6} \to {I_{EF}} = \dfrac{{m{l^2}}}{{12}}$
Similarly,
${21_{AC}} = \dfrac{{m{l^2}}}{6} \to {I_{AC}} = \dfrac{{m{l^2}}}{{12}}$
${I_{AC}} = {I_{EF}}$
Hence, the correct answer is Option A.
Note The concept of moment of inertia is important because all the physics problems that involve all the masses in the rotational motion. It will be used to calculate the angular momentum and allows us to explain. This explanation is done using the conservation of the angular momentum. If we increase the radius of the axis of rotation, the moment of inertia increases. This will result in the lowering of the speed of rotation.
Complete step by step answer:
We know that the moment of inertia of a square lamina about an axis perpendicular to its plane = $\dfrac{{m{l^2}}}{6}$
Therefore, by perpendicular axes theorem,
${21_{EF}} = \dfrac{{m{l^2}}}{6} \to {I_{EF}} = \dfrac{{m{l^2}}}{{12}}$
Similarly,
${21_{AC}} = \dfrac{{m{l^2}}}{6} \to {I_{AC}} = \dfrac{{m{l^2}}}{{12}}$
${I_{AC}} = {I_{EF}}$
Hence, the correct answer is Option A.
Note The concept of moment of inertia is important because all the physics problems that involve all the masses in the rotational motion. It will be used to calculate the angular momentum and allows us to explain. This explanation is done using the conservation of the angular momentum. If we increase the radius of the axis of rotation, the moment of inertia increases. This will result in the lowering of the speed of rotation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

