
For all values of $\theta$ the locus of the point of intersection of the lines $x \cos \theta+y \sin \theta=a$ and $x \sin \theta-y \cos \theta=b$ is
(A) An ellipse
(B) A circle
(c) A parabola
(D) A hyperbola
Answer
216k+ views
Hint:We have to find the point of intersection of the given lines. For that, we are squaring the equations and comparing both the resultant equations to find the resultant equation. After that, we have to check the equation whether it is an ellipse or a circle or a parabola, hyperbola.
Complete step by step Solution:
Given that
$x\cos \theta +y\sin \theta =a\text{ }..........\text{(1)}$
$x\sin \theta -y\cos \theta =b\text{ }................\text{(2)}$
When we square and add (1) and (2), we get
$x^{2}+y^{2}=a^{2}+b^{2}$
This is the equation of a circle
Therefore, the correct option is B.
Additional Information:A locus is a curve or other shape that is created by a point, line, or moving surface, or by all the points that meet a specific equation of the relation between the coordinates. All shapes, including circles, ellipses, parabolas, and hyperbolas, are defined by the locus as collections of points. We can write the equation for a circle if we know the location of the circle's center and how long its radius is. All of the points on the circle's circumference are represented by the circle equation. The group of points whose separation from a fixed point has a constant value is represented by a circle. The radius of the circle abbreviated $r$, is a constant that describes this fixed point, which is known as the circle's center.
Note:Students should keep in that the general equation for a circle is $\left(\mathrm{x}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{1}\right)^{2}=\mathrm{r}^{2}$ whose centre is at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
Complete step by step Solution:
Given that
$x\cos \theta +y\sin \theta =a\text{ }..........\text{(1)}$
$x\sin \theta -y\cos \theta =b\text{ }................\text{(2)}$
When we square and add (1) and (2), we get
$x^{2}+y^{2}=a^{2}+b^{2}$
This is the equation of a circle
Therefore, the correct option is B.
Additional Information:A locus is a curve or other shape that is created by a point, line, or moving surface, or by all the points that meet a specific equation of the relation between the coordinates. All shapes, including circles, ellipses, parabolas, and hyperbolas, are defined by the locus as collections of points. We can write the equation for a circle if we know the location of the circle's center and how long its radius is. All of the points on the circle's circumference are represented by the circle equation. The group of points whose separation from a fixed point has a constant value is represented by a circle. The radius of the circle abbreviated $r$, is a constant that describes this fixed point, which is known as the circle's center.
Note:Students should keep in that the general equation for a circle is $\left(\mathrm{x}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{1}\right)^{2}=\mathrm{r}^{2}$ whose centre is at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

