
Find whether ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ is:
(a) $<{{\left( 101 \right)}^{50}}$
(b) $<\left( 101 \right)$
(c) $>{{\left( 101 \right)}^{50}}$
(d) $>\left( 101 \right)$
Answer
219k+ views
Hint: Use binomial expansion to expand ${{\left( 101 \right)}^{50}}$ and ${{\left( 99 \right)}^{50}}$ . Then subtract the two expressions obtained to get a new expression. Use the elements of the new expression to arrive at a relation between ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ and ${{\left( 101 \right)}^{50}}$ .
Complete step-by-step answer:
We need to find the relation between ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ and ${{\left( 101 \right)}^{50}}$ .
We will use binomial expansion to solve this question.
First, let us define binomial expansion.
The binomial expansion (or binomial theorem) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand ${{\left( x+y \right)}^{n}}$ into a sum involving terms of the form $a{{x}^{b}}{{y}^{c}}$ , where the exponents b and c are non negative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b.
Binomial expansion gives us the formula:
${{\left( a+b \right)}^{n}}={}_{0}^{n}C\cdot {{a}^{n}}{{b}^{0}}+{}_{1}^{n}C\cdot {{a}^{n-1}}{{b}^{1}}+...+{}_{n}^{n}C\cdot {{a}^{0}}{{b}^{n}}$
Let us first evaluate ${{\left( 101 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1$$\begin{align}
& {{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}} \\
& {{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \\
& \\
\end{align}$ …(1)
Now, we will evaluate ${{\left( 99 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{\left( 100-1 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1$ …(2)
We will now subtract equation (2) from equation (1) .
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-\left( {{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1 \right)$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-{{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}-{}_{2}^{50}C\cdot {{100}^{48}}+...-1$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times \left( {}_{1}^{50}C\cdot {{100}^{49}}+{}_{3}^{50}C\cdot {{100}^{47}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times {}_{1}^{50}C\cdot {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As we know that ${}_{1}^{50}C=50$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times 50\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As $2\times 50=100$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=100\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
Now, let $P=2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$ , where P is some positive number.
Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+P$
Also, we know that:
${{100}^{50}}+P>{{100}^{50}}$
Using this condition in the above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}>{{\left( 100 \right)}^{50}}$
Or, ${{\left( 101 \right)}^{50}}>{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$
Or, ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}<{{\left( 101 \right)}^{50}}$ .
Hence, option (a) is the correct answer.
Note: It is important to understand the fact that alternate terms in the expansions of ${{\left( 101 \right)}^{50}}$ and ${{\left( 99 \right)}^{50}}$ will be of opposite sign. So, if we subtract these expansions, these alternate terms will get cancelled out. Use this property to arrive at the final answer.
Complete step-by-step answer:
We need to find the relation between ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ and ${{\left( 101 \right)}^{50}}$ .
We will use binomial expansion to solve this question.
First, let us define binomial expansion.
The binomial expansion (or binomial theorem) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand ${{\left( x+y \right)}^{n}}$ into a sum involving terms of the form $a{{x}^{b}}{{y}^{c}}$ , where the exponents b and c are non negative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b.
Binomial expansion gives us the formula:
${{\left( a+b \right)}^{n}}={}_{0}^{n}C\cdot {{a}^{n}}{{b}^{0}}+{}_{1}^{n}C\cdot {{a}^{n-1}}{{b}^{1}}+...+{}_{n}^{n}C\cdot {{a}^{0}}{{b}^{n}}$
Let us first evaluate ${{\left( 101 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1$$\begin{align}
& {{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}} \\
& {{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \\
& \\
\end{align}$ …(1)
Now, we will evaluate ${{\left( 99 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{\left( 100-1 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1$ …(2)
We will now subtract equation (2) from equation (1) .
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-\left( {{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1 \right)$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-{{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}-{}_{2}^{50}C\cdot {{100}^{48}}+...-1$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times \left( {}_{1}^{50}C\cdot {{100}^{49}}+{}_{3}^{50}C\cdot {{100}^{47}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times {}_{1}^{50}C\cdot {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As we know that ${}_{1}^{50}C=50$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times 50\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As $2\times 50=100$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=100\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
Now, let $P=2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$ , where P is some positive number.
Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+P$
Also, we know that:
${{100}^{50}}+P>{{100}^{50}}$
Using this condition in the above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}>{{\left( 100 \right)}^{50}}$
Or, ${{\left( 101 \right)}^{50}}>{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$
Or, ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}<{{\left( 101 \right)}^{50}}$ .
Hence, option (a) is the correct answer.
Note: It is important to understand the fact that alternate terms in the expansions of ${{\left( 101 \right)}^{50}}$ and ${{\left( 99 \right)}^{50}}$ will be of opposite sign. So, if we subtract these expansions, these alternate terms will get cancelled out. Use this property to arrive at the final answer.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

