
Find whether ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ is:
(a) $<{{\left( 101 \right)}^{50}}$
(b) $<\left( 101 \right)$
(c) $>{{\left( 101 \right)}^{50}}$
(d) $>\left( 101 \right)$
Answer
137.4k+ views
Hint: Use binomial expansion to expand ${{\left( 101 \right)}^{50}}$ and ${{\left( 99 \right)}^{50}}$ . Then subtract the two expressions obtained to get a new expression. Use the elements of the new expression to arrive at a relation between ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ and ${{\left( 101 \right)}^{50}}$ .
Complete step-by-step answer:
We need to find the relation between ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ and ${{\left( 101 \right)}^{50}}$ .
We will use binomial expansion to solve this question.
First, let us define binomial expansion.
The binomial expansion (or binomial theorem) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand ${{\left( x+y \right)}^{n}}$ into a sum involving terms of the form $a{{x}^{b}}{{y}^{c}}$ , where the exponents b and c are non negative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b.
Binomial expansion gives us the formula:
${{\left( a+b \right)}^{n}}={}_{0}^{n}C\cdot {{a}^{n}}{{b}^{0}}+{}_{1}^{n}C\cdot {{a}^{n-1}}{{b}^{1}}+...+{}_{n}^{n}C\cdot {{a}^{0}}{{b}^{n}}$
Let us first evaluate ${{\left( 101 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1$$\begin{align}
& {{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}} \\
& {{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \\
& \\
\end{align}$ …(1)
Now, we will evaluate ${{\left( 99 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{\left( 100-1 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1$ …(2)
We will now subtract equation (2) from equation (1) .
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-\left( {{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1 \right)$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-{{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}-{}_{2}^{50}C\cdot {{100}^{48}}+...-1$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times \left( {}_{1}^{50}C\cdot {{100}^{49}}+{}_{3}^{50}C\cdot {{100}^{47}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times {}_{1}^{50}C\cdot {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As we know that ${}_{1}^{50}C=50$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times 50\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As $2\times 50=100$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=100\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
Now, let $P=2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$ , where P is some positive number.
Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+P$
Also, we know that:
${{100}^{50}}+P>{{100}^{50}}$
Using this condition in the above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}>{{\left( 100 \right)}^{50}}$
Or, ${{\left( 101 \right)}^{50}}>{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$
Or, ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}<{{\left( 101 \right)}^{50}}$ .
Hence, option (a) is the correct answer.
Note: It is important to understand the fact that alternate terms in the expansions of ${{\left( 101 \right)}^{50}}$ and ${{\left( 99 \right)}^{50}}$ will be of opposite sign. So, if we subtract these expansions, these alternate terms will get cancelled out. Use this property to arrive at the final answer.
Complete step-by-step answer:
We need to find the relation between ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$ and ${{\left( 101 \right)}^{50}}$ .
We will use binomial expansion to solve this question.
First, let us define binomial expansion.
The binomial expansion (or binomial theorem) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand ${{\left( x+y \right)}^{n}}$ into a sum involving terms of the form $a{{x}^{b}}{{y}^{c}}$ , where the exponents b and c are non negative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b.
Binomial expansion gives us the formula:
${{\left( a+b \right)}^{n}}={}_{0}^{n}C\cdot {{a}^{n}}{{b}^{0}}+{}_{1}^{n}C\cdot {{a}^{n-1}}{{b}^{1}}+...+{}_{n}^{n}C\cdot {{a}^{0}}{{b}^{n}}$
Let us first evaluate ${{\left( 101 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}}$
${{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1$$\begin{align}
& {{\left( 101 \right)}^{50}}={{\left( 100+1 \right)}^{50}} \\
& {{\left( 101 \right)}^{50}}={{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \\
& \\
\end{align}$ …(1)
Now, we will evaluate ${{\left( 99 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{\left( 100-1 \right)}^{50}}$
${{\left( 99 \right)}^{50}}={{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1$ …(2)
We will now subtract equation (2) from equation (1) .
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-\left( {{100}^{50}}-{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}-...+1 \right)$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=\left( {{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}+{}_{2}^{50}C\cdot {{100}^{48}}+...+1 \right)-{{100}^{50}}+{}_{1}^{50}C\cdot {{100}^{49}}-{}_{2}^{50}C\cdot {{100}^{48}}+...-1$${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times \left( {}_{1}^{50}C\cdot {{100}^{49}}+{}_{3}^{50}C\cdot {{100}^{47}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times {}_{1}^{50}C\cdot {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As we know that ${}_{1}^{50}C=50$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=2\times 50\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
As $2\times 50=100$ . Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}=100\times {{100}^{49}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$
Now, let $P=2\times \left( {}_{3}^{50}C\cdot {{100}^{47}}+{}_{5}^{50}C\cdot {{100}^{45}}+... \right)$ , where P is some positive number.
Substituting this in above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}={{100}^{50}}+P$
Also, we know that:
${{100}^{50}}+P>{{100}^{50}}$
Using this condition in the above equation, we will get the following:
${{\left( 101 \right)}^{50}}-{{\left( 99 \right)}^{50}}>{{\left( 100 \right)}^{50}}$
Or, ${{\left( 101 \right)}^{50}}>{{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}$
Or, ${{\left( 100 \right)}^{50}}+{{\left( 99 \right)}^{50}}<{{\left( 101 \right)}^{50}}$ .
Hence, option (a) is the correct answer.
Note: It is important to understand the fact that alternate terms in the expansions of ${{\left( 101 \right)}^{50}}$ and ${{\left( 99 \right)}^{50}}$ will be of opposite sign. So, if we subtract these expansions, these alternate terms will get cancelled out. Use this property to arrive at the final answer.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Other Pages
Formula for Mean Deviation For Ungrouped Data

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
