
Find the value of the integration $\int {(1 + x - \dfrac{1}{x}){e^{\left( {x + \frac{1}{x}} \right)}}dx} $ .
A.$(x - 1){e^{\left( {x + \frac{1}{x}} \right)}} + c$
B.$x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
C.$(x + 1){e^{\left( {x + \frac{1}{x}} \right)}} + c$
D. $ - x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
Answer
216.6k+ views
Hint: First rewrite the given integrant as $\int {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} $ , then split the integration. After that integrate the first part with the help of by parts integration and keep the second part as it is.
Formula Used:
The formula of by parts integration is,
$\int {uvdx = u\int {vdx - \int {\left[ {\dfrac{d}{{dx}}(u)\int {vdx} } \right]} dx} } $ , where u and v are the functions of x only.
Complete step by step solution:
Rewrite the give integration as,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} $.
So, $\int {\left[1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}\right]dx} = \int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} $---(1)
Now, integrate $\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx$ with by parts rule.
$\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx = {e^{\left( {x + \frac{1}{x}} \right)}}\int {dx - \int {\left[ {\dfrac{d}{{dx}}{e^{\left( {x + \frac{1}{x}} \right)}}\int {dx} } \right]dx} } $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {{e^{\left( {x + \frac{1}{x}} \right)}}\dfrac{d}{{dx}}\left( {x + \dfrac{1}{x}} \right)xdx} $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$--(2), where c is the integrating constant.
From (1) and (2) we have,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
Option ‘B’ is correct
Note: Do not use the by part formula in both parts of the integral (1) that is not required, you just need to integrate the first part; the second one will get canceled at the end.
Formula Used:
The formula of by parts integration is,
$\int {uvdx = u\int {vdx - \int {\left[ {\dfrac{d}{{dx}}(u)\int {vdx} } \right]} dx} } $ , where u and v are the functions of x only.
Complete step by step solution:
Rewrite the give integration as,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} $.
So, $\int {\left[1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}\right]dx} = \int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} $---(1)
Now, integrate $\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx$ with by parts rule.
$\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx = {e^{\left( {x + \frac{1}{x}} \right)}}\int {dx - \int {\left[ {\dfrac{d}{{dx}}{e^{\left( {x + \frac{1}{x}} \right)}}\int {dx} } \right]dx} } $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {{e^{\left( {x + \frac{1}{x}} \right)}}\dfrac{d}{{dx}}\left( {x + \dfrac{1}{x}} \right)xdx} $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$--(2), where c is the integrating constant.
From (1) and (2) we have,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
Option ‘B’ is correct
Note: Do not use the by part formula in both parts of the integral (1) that is not required, you just need to integrate the first part; the second one will get canceled at the end.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

