
Find the value of the integration $\int {(1 + x - \dfrac{1}{x}){e^{\left( {x + \frac{1}{x}} \right)}}dx} $ .
A.$(x - 1){e^{\left( {x + \frac{1}{x}} \right)}} + c$
B.$x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
C.$(x + 1){e^{\left( {x + \frac{1}{x}} \right)}} + c$
D. $ - x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
Answer
232.8k+ views
Hint: First rewrite the given integrant as $\int {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} $ , then split the integration. After that integrate the first part with the help of by parts integration and keep the second part as it is.
Formula Used:
The formula of by parts integration is,
$\int {uvdx = u\int {vdx - \int {\left[ {\dfrac{d}{{dx}}(u)\int {vdx} } \right]} dx} } $ , where u and v are the functions of x only.
Complete step by step solution:
Rewrite the give integration as,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} $.
So, $\int {\left[1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}\right]dx} = \int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} $---(1)
Now, integrate $\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx$ with by parts rule.
$\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx = {e^{\left( {x + \frac{1}{x}} \right)}}\int {dx - \int {\left[ {\dfrac{d}{{dx}}{e^{\left( {x + \frac{1}{x}} \right)}}\int {dx} } \right]dx} } $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {{e^{\left( {x + \frac{1}{x}} \right)}}\dfrac{d}{{dx}}\left( {x + \dfrac{1}{x}} \right)xdx} $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$--(2), where c is the integrating constant.
From (1) and (2) we have,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
Option ‘B’ is correct
Note: Do not use the by part formula in both parts of the integral (1) that is not required, you just need to integrate the first part; the second one will get canceled at the end.
Formula Used:
The formula of by parts integration is,
$\int {uvdx = u\int {vdx - \int {\left[ {\dfrac{d}{{dx}}(u)\int {vdx} } \right]} dx} } $ , where u and v are the functions of x only.
Complete step by step solution:
Rewrite the give integration as,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} $.
So, $\int {\left[1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}\right]dx} = \int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} $---(1)
Now, integrate $\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx$ with by parts rule.
$\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx = {e^{\left( {x + \frac{1}{x}} \right)}}\int {dx - \int {\left[ {\dfrac{d}{{dx}}{e^{\left( {x + \frac{1}{x}} \right)}}\int {dx} } \right]dx} } $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {{e^{\left( {x + \frac{1}{x}} \right)}}\dfrac{d}{{dx}}\left( {x + \dfrac{1}{x}} \right)xdx} $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$--(2), where c is the integrating constant.
From (1) and (2) we have,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
Option ‘B’ is correct
Note: Do not use the by part formula in both parts of the integral (1) that is not required, you just need to integrate the first part; the second one will get canceled at the end.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

