
Find the value of the integration $\int {(1 + x - \dfrac{1}{x}){e^{\left( {x + \frac{1}{x}} \right)}}dx} $ .
A.$(x - 1){e^{\left( {x + \frac{1}{x}} \right)}} + c$
B.$x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
C.$(x + 1){e^{\left( {x + \frac{1}{x}} \right)}} + c$
D. $ - x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
Answer
164.1k+ views
Hint: First rewrite the given integrant as $\int {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} $ , then split the integration. After that integrate the first part with the help of by parts integration and keep the second part as it is.
Formula Used:
The formula of by parts integration is,
$\int {uvdx = u\int {vdx - \int {\left[ {\dfrac{d}{{dx}}(u)\int {vdx} } \right]} dx} } $ , where u and v are the functions of x only.
Complete step by step solution:
Rewrite the give integration as,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} $.
So, $\int {\left[1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}\right]dx} = \int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} $---(1)
Now, integrate $\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx$ with by parts rule.
$\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx = {e^{\left( {x + \frac{1}{x}} \right)}}\int {dx - \int {\left[ {\dfrac{d}{{dx}}{e^{\left( {x + \frac{1}{x}} \right)}}\int {dx} } \right]dx} } $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {{e^{\left( {x + \frac{1}{x}} \right)}}\dfrac{d}{{dx}}\left( {x + \dfrac{1}{x}} \right)xdx} $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$--(2), where c is the integrating constant.
From (1) and (2) we have,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
Option ‘B’ is correct
Note: Do not use the by part formula in both parts of the integral (1) that is not required, you just need to integrate the first part; the second one will get canceled at the end.
Formula Used:
The formula of by parts integration is,
$\int {uvdx = u\int {vdx - \int {\left[ {\dfrac{d}{{dx}}(u)\int {vdx} } \right]} dx} } $ , where u and v are the functions of x only.
Complete step by step solution:
Rewrite the give integration as,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} $.
So, $\int {\left[1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}\right]dx} = \int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} $---(1)
Now, integrate $\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx$ with by parts rule.
$\int {{e^{\left( {x + \frac{1}{x}} \right)}}} dx = {e^{\left( {x + \frac{1}{x}} \right)}}\int {dx - \int {\left[ {\dfrac{d}{{dx}}{e^{\left( {x + \frac{1}{x}} \right)}}\int {dx} } \right]dx} } $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {{e^{\left( {x + \frac{1}{x}} \right)}}\dfrac{d}{{dx}}\left( {x + \dfrac{1}{x}} \right)xdx} $
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$--(2), where c is the integrating constant.
From (1) and (2) we have,
$\int {\left[ {1 + x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}} \right]dx} = x{e^{\left( {x + \frac{1}{x}} \right)}} - \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + \int {x\left( {1 - \dfrac{1}{{{x^2}}}} \right){e^{\left( {x + \frac{1}{x}} \right)}}dx} + c$
$ = x{e^{\left( {x + \frac{1}{x}} \right)}} + c$
Option ‘B’ is correct
Note: Do not use the by part formula in both parts of the integral (1) that is not required, you just need to integrate the first part; the second one will get canceled at the end.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
